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Résumé – Cet article propose une méthode d’estimation d’homographie basée sur des textures auto-rectifiantes, exploitant l’auto-
corrélation pour se passer de points de repère explicites. Les pics d’autocorrélation locaux permettent d’estimer les transformations
affines, puis de reconstruire l’homographie globale. La solution, robuste aux occultations et discrète, s’adapte à des usages comme
la stéganographie ou la vision par ordinateur.

Abstract – This paper proposes a homography estimation method using self-rectifying textures, leveraging autocorrelation to
avoid explicit key points. Local autocorrelation peaks are used to estimate affine transformations, then reconstruct the global
homography. The approach, robust to occlusions and unobtrusive, suits applications such as steganography or computer vision.

1 Introduction
Traditional fiducial markers rectify images using pixel land-

marks. For instance, QR code readers often use the pixel
coordinates of the code’s four corners to identify the rectify-
ing homography, using the three “eyes” to break quadrilateral
symmetry [12]. Marker boards (checkerboard patterns of high-
contrast fiducial markers) supply many corners whose coor-
dinates can be identified using simple low-level algorithms,
enabling the rectification of more complex deformations [6].

Marker boards are robust to tampering and occlusion. But
they are conspicuous and unsuited for many applications with
aesthetic constraints. For this reason, stealth self-rectifying tex-
tures were introduced [9]. These textures encode pose informa-
tion with landmarks not in the image itself but rather as peaks
in its autocorrelation (or power spectrum) image–permitting
their inconspicuousness. Their robustness is assured by the
fact that each patch contains the landmarks.

Such textures can be rectified patchwise, as described in
Section 2. Complex deformations of a texture can be modeled
as affine in small patches. As each affine transformation lin-
early deforms the fiducial markers (peak locations), its linear
part can be recovered from the defomed landmarks–but not
its phase. Extracting the phase requires access to the template
texture (rather than simply the pixel locations of autocorrela-
tion landmarks in the rectified image) and one costly phase
correlation operation per patch.

These phase correlations are, in many situations, unnec-
essary. Rectification (modulo a translation) can be accom-
plished without access to the template image, only this limited
knowledge of its statistical properties–the rectified peak loca-
tions. One might work nonparametrically, by integrating the
differentials directly or viewing the ensemble of differential
observations as an integrable polyvector field [2, 5, 8].

In this article, we fit a parametric model–namely, a recti-
fying homography–to observations of the local differentials

of the deformation (revealed by autocorrelation landmarks in
patches). In this way, a self-rectifying texture to which we need
not have direct access can be rectified modulo translation. A
known texture acquired with homographic deformation can be
fully inteiinterinrectified with just one costly phase correlation.

2 Texture Generation and Patchwise
Deformation Estimation

We create inconspicuous textures with autocorrelation land-
marks by superimposing three shifted copies of a base texture,
creating a “fundamental hexagon” of autocorrelation peaks.
Other sets of peaks may be used for deformation differential
estimation and other methods of generating a texture exhibit-
ing peaks at the desired locations can be envisioned. Indeed,
the ill-posed phase retrieval inverse problem from homomet-
ric point sets [10] and the stability of peak positions under
common operations offer extensive design freedom.

Figure 1 demonstrates how to generate a simple self-
rectifying texture whose rectified patches all have prominent
autocorrelation peaks at fixed locations due to the known off-
sets with which the texture was generated. Let u, v ∈ R2 be
offsets, not necessarily orthogonal, though not collinear. A
texture 1 T : R2 → R can be made self-rectifying by summing
shifted copies Tsr = T+T (·−u)+T (·−v). These two offsets
generate peaks in the autocorrelation image at the origin and at
Hrect = {±u,±v,±(u− v)}. The only constraint on the base
texture T is that its autocorrelation peak at 0 be prominent.

This “fundamental hexagon” Hrect is deformed linearly by
affine maps, exposing the linear part of the affine map with
which the texture is acquired. Let A ∈ Aff(2,R) be an affine

1. To simplify the discussion, we view textures as infinite and real-valued,
though this analysis can be adapted to rectangular domains with cyclic shifts
and quantized images with little difference.
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(a) A texture with prominent autocorrelation peak at 0.
u

u

v

v

(b) The sum of three images at pairwise lags ±u,±v, and
±(u− v) gives rise to a fundamental hexagon of peaks, which
can be used to rectify affine deformations up to translation.

Figure 1 – Texture overlays yield peaks in the autocorrela-
tion image. Three superimposed copies of the texture of (a),
with relative lags u and v, produce the fundamental hexagon
associated with the six nonzero pairwise lags, visible in the
autocorrelation of the texture in (b).

transformation. Thus, for some A ∈ GL(2,R) and b ∈ R2, A
is the map x 7→ Ax+b. Denoting by R the autocorrelation op-
erator, we observe that R(T◦A) ∝ R(T)◦A. The locations of
the fundamental hexagon in a patch in the deformed texture are
therefore situated at Hdef = {±Au,±Av,±A(u−v)}. After
matching the six peak locations Hrect to their deformed posi-
tions in Hdef, we can take A to be the least-squares estimate
of the overdetermined linear system Hdef = AHrect.

With knowledge of the texture, the assignment problem is
readily solved using phase correlation. Without access to the
texture, one can distinguish peaks by weighting the shifted
copies so that T = T +αu ·T (·−u)+αv ·T (·− v) for some
αu, αv ∈ R. Often, the six peaks can also be assigned simply
by considering their sums and differences. Let {p1, p2} ⊆
Hdef be noncollinear. Then {±p1±p2} ⊆ {±Au±Av} only
when {p1, p2} ⊆ {±Au,±Av}. Prior constraints on A or
asymmetric texture motifs can complete the assignment.

From observations {Ai}ni=1 of the linear part of the local
affine approximation to an arbitrary deformation H, computed
on patches {Pi}ni=1 centered at {yi}ni=1 in the deformed im-
age, we can rectify the texture patchwise. The phase corre-
lation reveals the translation parameter bi of the local affine
map: bi = argmax

(
( pTsr ◦ pP ∗

i )/| pTsr ◦ pP ∗
i |
)
q. Thus, the first-

order Taylor approximation of the deformation, valid near
H−1(yi) = A−1(yi− bi), is h 7→ yi+Ai(h−xi); its inverse
h 7→ xi +A−1

i (h− yi) rectifies the patch.
When the deformation H is a homography, we can use these

Taylor approximations to compute the global rectifying homog-
raphy H−1. The translation parameters bi give us coordinate
pairs (A−1(yi − bi), yi) in the rectified and deformed images,
respectively, facilitating traditional correspondence-based ho-
mography estimation. This approach nevertheless requires n
phase correlations and access to the texture. Instead, we seek a
fully correspondence-free estimation of the rectifying homog-
raphy, modulo the translation parameters, without access to
the texture, only knowledge of its fundamental shifts u and v.

Figure 2 – A self-rectifying texture covering a rectangular
prism and the fundamental hexagons of two patches.

3 Jacobian-based Homography Fitting
An isomorphism of the real projective plane P2 (the set

of lines through the origin in R3) is called a homogra-
phy. Homographies form the projective linear group H ∈
PGL(3,R) ∼= GL(3,R)/R×. These nonlinear planar defor-
mations H : R2 → R2 can be represented by an equivalence
class of 3× 3 invertible matrices {ηMH | η ̸= 0} that operate
on homogeneous coordinates. We can always choose as class
representer the unique matrix MH with detMH = 1. Here

MH =

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 =

 h1

h2

h3

 (1)

corresponds to the planar deformation H : R2 → R2:

(
x y

)T 7→ 1

⟨h3,
(
x y 1

)T ⟩R3

(
⟨h1,

(
x y 1

)T ⟩R3

⟨h2,
(
x y 1

)T ⟩R3

)
. (2)

The Jacobian matrix of H, parameterized by MH in (1), evalu-
ated at some yi ∈ R2, then, is as follows:

∇xiH =

(
h1,1 h1,2

h2,1 h2,2

)
− (Hxi)⊗

(
h3,1 h3,2

)
〈
h3,
(
xi[1] xi[2] 1

)T〉
R3

. (3)

In each patch Pi, centered at yi, we can observe the deformed
version Hi

def of the fundamental hexagon of peaks Hrect. The
pixel locations of these fiducial markers in the autocorrelation
of Pi exposes the differential of the deforming homography
H, evaluated at xi = H−1(yi) = A−1

i (yi − bi). This matrix
Ai can be recovered by solving Hi

def = AiHrect. We wish to
estimate H from the ensemble of observations of ∇H−1(yi)H.

example]problem:problem:recover-homography
Problem 1: Homography Recovery (up to Translation)

Given observations {Ai}ni=1 of the Jacobian matrices
Ai = ∇H−1(yi)H of a planar deformation H computed
on patches of deformed texture with centers {yi}ni=1 ⊆
R2, search for a homography behaving as H:

H∗ = argmin
H∈H

1

n

n∑
i=1

loss
(
∇H−1(yi)H,Ai

)
. (4)

Or seek the rectifying homography G = H−1:

G∗ = argmin
G∈H

1

n

n∑
i=1

loss
(
∇yi

G,A−1
i

)
. (5)
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With hypothesis space H = PGL(3,R), the problems (4)-
(5) are ill-posed. Indeed, the differentials are (and thus the loss
is) invariant to a translation τ since ∇xτ = I for all x ∈ R2:

∇(H◦τ)−1(yi) (H ◦ τ) = ∇(τ◦τ−1◦H−1)(yi)H · ∇(H◦τ)−1(yi)τ

= ∇H−1(yi)H · I = ∇H−1(yi)H.

We choose a loss that punishes equally the unfaithfulness
of each entry of the fit Jacobian matrices to the observations.
(Metrics of average rectification error in pixels over a domain,
as in [7], can sidestep the unbalanced impact of each entry.)

In our experiments, we solve problem 5 with Frobenius-
norm loss: loss(a, b) = ||a − b||F . Problem (5), without the
inverse homography in the objective, assumes a simpler form
than (4). (Indeed, if we square each patchwise loss term and
multiply through the squared denominators, we obtain a quar-
tic polynomial objective–though nonconvex, in eight variables.
But this renders the penalty more sensitive to outliers without
computational benefit.) The loss is robust and its dependence
on the variables is not mediated through an inverse.

Our inverse problem with non-convex loss requires an iter-
ative approach. In these experiments, we optimize over the
Euclidean space R6 to learn six of the eight homography pa-
rameters–an approach we justify in the following section. Due
to our small datasets, we considered nonstochastic gradient
descent with various settings of line search; however, conver-
gence was too slow for our application. We found acceptable
performance using the trust region method as implemented in
pymanopt [1, 11] using the manifold R6.

3.1 Euclidean optimization on R6

By the quotient manifold theorem [3], PGL(3,R) is a quo-
tient manifold. It is an easy matter to show that PGL(3,R) is
isomorphic to the special linear group SL(3,R) as a Lie group
and manifold: indeed, for n odd, we have that GL(n,R) =
R× × SL(n,R). Consequently, the Lie algebra of PGL(3,R)
is sl(3,R), the traceless 3 × 3 matrices. Optimizing over
GL(3,R) makes little sense as it is dense in Euclidean space
R3×3. In practice, we find that optimizing over SL(3,R) does
not speed up first-order methods for our loss; gradient descent
over R9 has no trouble converging to an invertible matrix, in-
terpretable as a homography. In hopes of speeding up conver-
gence by passing from the usual Euclidean optimization over
R9 to R6, we consider the action of translations on SL(3,R).

Let T(2,R) be the group of translations
(
x y

)T 7→(
x+ a y + b

)T
parameterized by

(
a b
)T ∈ R2. As a ho-

mography matrix applied to homogeneous coordinates, each
element of T(2,R) is in SL(3,R):

T(2,R) =


1 0 a
0 1 b
0 0 1

 ∣∣∣∣∣
(
a
b

)
∈ R2

 ∼= R2. (6)

A closed subgroup of SL(3,R), T(2,R) is a Lie group with
Lie algebra spanned by two matrices P1 and P2, with the
usual commutator bracket. Each matrix has only one nonzero
element, in the top-right and middle-right entries (where a
and b are), respectively. Since T(2,R) is not a normal sub-
group of SL(3,R), the quotient SL(3,R)/T(2,R) is not a Lie
group. However, by the quotient manifold theorem, this homo-
geneous space is a smooth manifold. It is covered by the union

of three manifolds, one of which is the Lie group A2(2,R)
that consists of the transposes of matrices in the affine group
Aff(2,R). The Lie algebra of A2(2,R) is a2(2,R), a maxi-
mal Lie subalgebra of sl(3,R), and spanned by the traceless
matrices E1,E2,E3,D,R1, and R2 of [4], Section 4. These
matrices, combined with P1 = RT

1 and P2 = RT
2 , form an

orthonormal basis for sl(3,R). (Swapping P1 and P2 for R1

and R2, we recover the other maximal subalgebra of sl(3,R),
that of Aff(2,R); see [4], Lemma 18.)

T(2,R) is a normal subgroup of Aff(2,R). Similarly,
the Lie group {MT

∣∣ M ∈ T(2,R)} of matrix transposes
of T(2,R) is a normal subgroup of A2(2,R). Identify-
ing translations with R2, it is easy to see that A2(2,R) ∼=
R2 ⋊GL(2,R)–and is dense in R6.

We want to represent elements of SL(3,R) modulo transla-
tions by an element in A2(2,R). The action (M,T) 7→ MT
of multiplying a matrix M ∈ SL(3,R) on the right by a trans-
lation matrix T ∈ T(2,R) partitions SL(3,R) into orbits of
dimension 2 consisting of matrices related by translations:
M1 ∼ M2 ⇐⇒ M2 = M1T12 for some T12 ∈ T(2,R).

Let M ∈ SL(3,R) and consider its orbit {MT |T ∈
T(2,R)} under the action of T(2,R). If the first 2× 2 princi-
pal submatrix of M happens to be invertible, there is a unique
choice of T ∈ T(2,R) of the form (6) such that M = AT,
where A ∈ A2(2,R). We find the orbit representative of
M = (mi,j)

3
i,j=1 by “translating to zero” its top-right and

middle-right entries: [M] = MT−1 ∈ A2(2,R), where

T−1 =

1 0 b1
0 1 b2
0 0 1

 with
(
b1
b2

)
=

(
m1,1 m1,2

m2,1 m2,2

)−1(
m1,3

m2,3

)
.

While M[1 : 2, 1 : 2] could be singular, at least one of the three
2 × 2 principal minors must be nonzero as M ∈ SL(3,R).
Thus, we can always permute two rows, multiply a row by -1 to
preserve the unit determinant, and then “translate to zero.” Any
M ∈ SL(3,R) thereby admits the decomposition M = AN,
where A ∈ A2(2,R) and N takes one of three forms:

N1 =

1 0 b1
0 1 b2
0 0 1

; N2 =

−1 c1 0
0 c2 1
0 1 0

; N3 =

c1 0 −1
c2 1 0
1 0 0

.
The first matrix N1 is a translation; the row swaps of N2 and
N3, in homogeneous coordinates, send the origin to infinity.

As the homographies we seek to rectify have invertible first
2× 2 principal submatrix, A2(2,R) is the relevant portion of
SL(3,R)/T(2,R). We choose the matrix scale so A2(2,R) is
dense in a six-dimensional affine subspace of R9:

A2(2,R) ∼= A′
2(2,R) =


a b 0
c d 0
x y 1

 ∈ R3×3

∣∣∣∣∣ ad ̸= bc

.
4 Experiments

We deform a (cropped) self-rectifying texture

Tsr = T + T
(
· −
(
50 0

)T)
+ T

(
· −
(
0 50

)T)
,

where T is composed of a steganographic message (with 1s
encoded 5× 5 squares and 0s blank) using a known homog-
raphy H, representative of a handheld camera view of the
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(a) Tsr ◦H. (b) Patchwise rectified. (c) Taylor error. (d) Patchwise error. (e) Global error.

Figure 3 – (a): example self-rectified texture Tsr, deformed by H. (b): patchwise rectification of (a) using peaks extracted from the
autocorrelation of each of the uniformly spaced 118× 118 patches in the deformed image to estimate Ai and a phase correlation to
extract the translation component of the first-order approximation of the rectifying homography G = H−1 about yi. (c)-(e) present
a crop of the deformed texture (a), in each case with a different error shading overlaid on a selection of the 118× 118 patches. (c):
the patchwise rectification error of the first-order Taylor approximation overlaid. (With known homography, patchwise rectification
error stems only from Taylor-series truncation, not estimation of Ai.) For each pixel in a selected patch with offset p relative to
patch center yi, ||G(yi + p)−Gyi − (∇yi

G)p||R2 is shaded, clipped at 1 pixel. (d): the rectification error ||A−1
i p− (∇yi

G)p||R2

when using the linear part of the rectifying map A−1
i , determined by the Ai estimated from fundamental hexaon movement, and

the linear part of the first-order rectifying map calculated at the patch center (∇H−1yi
H)−1 = ∇yiG. Also clipped at 1 pixel. (e):

the error of the global homography fit to the patchwise differentials.

texture, in Figure 3a. From patches of size 118× 118 in the
deformed image, we compute the error of a first-order Taylor
series expansion using the known gradient at the patch centers.
A selection of these theoretical best errors are overlaid on a
crop of the deformed texture in Figure 3c. Despite the large
patch size, the error between the estimated and true differential
in Frobenius norm is small (10−5 in most patches); measured
in pixels, this norm error induces non-negligible patchwise
rectification error (see Figs. 3b and 3d). From the differentials
estimated on patches, a pymanopt TrustRegions opti-
mization over R6 of the sum of Frobenius-norm patchwise
loss finds an element of R6–and indeed of A′

2(2,R)–with loss
on the order of 10−3. Phase correlation is used to find the best
translation. As Figures 3d-3e indicate, complete rectification
of a homography using the homography fit to the patchwise
differentials performs better than rectification patchwise–and
requires just one phase correlation, saving far more than the
added 50 ms TrustRegions optimization.

5 Conclusion
We have demonstrated the ability to learn a homography

modulo translation from observations of its differential com-
puted on patches using the properties of self-rectifying textures.
This is at once more computationally efficient and more widely
applicable than rectification by patch as it requires no phase
correlation and thus no access to the texture, only the fiducial
marker (the shifts that produce the fundamental hexagon). We
leave as future work the rectification of more complex defor-
mations, locally using homographies or using more complex
parametric models, such as thin-plate splines.
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