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Résumé – Nous proposons une méthode d’estimation d’exposants d’invariance d’échelle pour des processus portés par des supports
lacunaires ou non-homogènes. Son originalité est de permettre d’extraire des informations relatives à un large éventail d’échelles
spatiales et temporelles sans qu’il soit nécessaire d’extrapoler le processus en dehors de son support. À partir de données synthétiques
(mouvement brownien fractionnaire restreint à un support obtenu comme distributions de Poisson), nous comparons l’approche
proposée à l’analyse d’invariance d’échelle classique, appliqués aux mêmes données après extrapolation des donnés manquantes sur
une grille régulière et homogène.

Abstract – We propose a strategy for estimating the parameters of scale invariance for processes defined on lacunary or nonhomo-
geneous supports. The originality of this strategy is that it allows us to extract information over a wide range of spatial and temporal
scales without having to extrapolate the process outside its support. Using synthetic data (generated from fractional Brownian
motion restricted to supports from Poisson distributions), we evaluate the proposed method by comparing it to the classical scale
invariance approach applied to the same data after filling in missing samples (through various interpolation methods) to create a
regular homogeneous grid.

1 Motivation
Context. Multifractal analysis [1, 2, 3] - or the general study
of scale invariance - has already found numerous applications
in a variety of fields, including finance, ecology, geography,
and geology [4, 5]. Multifractal analysis is mainly concerned
with measuring scaling exponents, which can then be further
used for, e.g., feature detection and classification tasks. An
intrinsic limitation is that most classical mathematical formu-
lations of scale invariance analysis rely on the assumption that
data are defined either everywhere on a homogeneous grid
or on an exactly self-similar fractal set. However, a signifi-
cant number of applications actually entail data that are only
defined on nonhomogeneous sets; this is notably the case in
geography, where collected data come with precise, georefer-
enced locations and are defined only on restricted and irregular
subsets (cf., e.g., [5]). This work aims to discuss issues related
to practical scale invariance analysis for such data.
Related works. Most studies dealing with scale invariance
and multifractal analysis on irregular grids base the discussion
on missing samples. This problem is particularly relevant in
neuroscience [6] or in the context of geospatial data [7, 8].
In most cases, missing samples are handled by interpolation,
followed by the use of classical scale invariance and multifrac-
tal analysis. Beyond classical interpolation schemes (cf., e.g.,
[6, 7]), energy-consuming neural network-based interpolation
strategies have also been studied (cf., e.g., [8]). However, in
the case of geospatial and environmental datasets, non-existing
values are due to the very nature of the phenomena and cannot
be interpreted as a simple missing value problem. Thus, the
present work provides preliminary contributions to alternative
scale invariance and multifractal analysis specific to data sam-
pled irregularly in nature.
Goals, contributions and outlines. The contributions and

goals of the present work are twofold. First, in the context of
nonhomogeneous 1D and 2D processes, we develop a method
that can extract information across a wide range of spatiotem-
poral scales (notably for fine length scales) without requiring a
prior interpolation of the data outside of their natural support
(cf. Section 2.1). Second, the proposed method, which uses
only the original data points, is compared empirically against
classical multifractal analysis, in which missing entries are in-
terpolated, using synthetic 1D and 2D synthetic data (defined
in Section 3). Comparative results (cf. Section 4) can be used
to quantify the advantages of the proposed approach in terms
of the level of lacunarity of the data. Python codes, devised by
the authors, used for this analysis are open-source and available
at https://pypi.org/project/lompy/.

2 Multifractal analysis for processes on
nonhomogeneous supports

2.1 Classical Multifracal analysis
Multifractal analysis. Multifractal analysis aims to char-
acterize the pointwise regularity of a process, the Hölder expo-
nent being the most widely used in practice. This information
is then encapsulated through the multifractal spectrum 𝐷(ℎ),
which yields the fractal dimensions of the set of points where
the regularity exponent takes the value ℎ. In practice, the
estimation of the multifractal spectrum requires a set of pro-
cedures originally inspired by thermodynamic formalism (see,
e.g., [3]). These are based on estimating the different moments
of multiscale coefficients and observing their evolution across
scales.
Multiscale (wavelet analysis). The wavelet coeffi-
cients 𝑇 (𝑎, 𝑥) of a process 𝑉 are defined as 𝑇 (𝑎, 𝑥) =
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∫𝑥∈ℝ𝑑 𝑉 (𝑦)𝜓𝑎(𝑦 − 𝑥)𝑑𝑦. The mother wavelet 𝜓 needs to have
at least one vanishing moment [2], ∫𝑥∈ℝ𝑑 𝜓(𝑥)𝑑𝑥 = 0 [9].
Scale invariance. A process 𝑉 is said to possess scale in-
variance or scaling properties if, for some statistical orders
𝑞, the time/space averages of |𝑇𝑉 (𝑎, 𝑥)|𝑞 display power law
behaviors with respect to scales 𝑎

𝑆𝑞(𝑎) = 𝔼{|𝑇𝑉 (𝑎, 𝑥)|𝑞} ∼ 𝐹𝑞|𝑎|
𝜁𝑞 . (1)

Multifractal formalisms. The scaling exponents 𝜁𝑞 are
related by a Legendre transform to the multifractal spectrum
𝐷(ℎ) ≤ min𝑞(𝑞𝐻−𝜁𝑞). A key parameter is 𝜁2, which provides
a summary of the properties of scaling invariance in terms of
both the global correlation (or spectral density) and the Hurst
exponent, 𝐻 = 𝜁2∕2.
Rationale behind the Haar and poor wavelets. Let us now
focus on the examples of the so-called Haar and poor wavelets
[9], defined as, with Π𝑥0,𝑎(𝑥) a rectangular function centered
at 𝑋0 and of size a:

𝜓1(𝑥) = Π1∕2,1(𝑥) − Π−1∕2,1(𝑥), (2)

𝜓2(𝑥) = 𝛿(𝑥) − Π0,1(𝑥). (3)

The corresponding (𝐿1-norm) wavelet coefficients read:

𝑇 1
𝑉 (𝑎, 𝑥) = 1

𝑎 ∫

𝑥

𝑥−𝑎
𝑉 (𝑥′)𝑑𝑥′ − 1

𝑎 ∫

𝑥+𝑎

𝑥
𝑉 (𝑥′)𝑑𝑥′ (4)

𝑇 2
𝑉 (𝑎, 𝑥) = 𝑉 (𝑥) − 1

𝑎 ∫

𝑥+𝑎∕2

𝑥−𝑎∕2
(𝑥′)𝑑𝑥′ (5)

𝑇 1
𝑉 (𝑎, 𝑥) can be interpreted as a derivative of the approximated

signal. 𝑇 2
𝑉 (𝑎, 𝑥) can be read as the averages of all increments

of size 𝑎′ < 𝑎 originated at 𝑥.
In a discrete time/space frameworks, these wavelet coeffi-

cients are practically computed using 𝐵𝑉𝑥,𝑎, the ball centered in
𝑥 and of radius 𝑎, as:

𝑇 1
𝑉 (𝑎, 𝑥) = 1

𝑎
∑

𝑥𝑖∈𝐵𝑉𝑥−𝑎∕2,𝑎

𝑉𝑖 −
1
𝑎

∑

𝑥𝑖∈𝐵𝑉𝑥+𝑎∕2,𝑎

𝑉𝑖, (6)

𝑇 2
𝑉 (𝑎, 𝑥) = 𝑉 (𝑥) − 1

𝑎
∑

𝑥𝑖∈𝐵𝑉𝑥−𝑎∕2,𝑥+𝑎∕2

𝑉𝑖. (7)

Figure 1 – 1D signal. Example of a “full” signal known
everywhere (𝑉𝑓𝑢𝑙𝑙, in black), its restriction to a “nonhomoge-
neous” set of points (𝑉𝑟𝑎𝑤, red dots), and the different signals
where the unknown values are replaced by the sample mean of
the known signal (𝑉0, magenta), the nearest interpolation (𝑉𝑛,
blue) and the linear interpolation (𝑉𝑙, cyan).

2.2 Processes with nonhomogeneous supports
One-dimensional case. Processes defined on nonhomoge-
neous supports can be modeled as a sum of Dirac distributions,
𝑉 (𝑥) =

∑

𝑖∈ 𝑉𝑖𝛿(𝑥 − 𝑥𝑖), where 𝑆 ⊂ ℝ denotes the support
of 𝑠, i.e., the set of points where 𝑠 is defined. The wavelet
coefficients thus become 𝑇𝑉 (𝑎, 𝑥) =

∑

𝑖∈ 𝑉𝑖𝜓𝑎(𝑥 − 𝑥𝑖).
From the intuitions recalled above for the Haar and poor

wavelets, the original proposition of this work is to define
two tentative types of wavelet coefficients specifically suited
to nonhomogeneous support, strongly relying on a new and
original quantity. If 𝑁𝑉

𝑥 (𝑎) = #
{

𝐵𝑉𝑥 (𝑎)
}

is the number of
samples in the support within a ball of radius 𝑎 centered on 𝑥,
then the multiresolution quantity is defined as:

𝑇 1
𝑉 (𝑎, 𝑥) =

1
𝑁𝑉
𝑥+𝑎∕2(𝑎)

∑

𝑥𝑖∈𝐵𝑉𝑥−𝑎∕2,𝑎

𝑉𝑖 −
1

𝑁𝑉
𝑥−𝑎∕2(𝑎)

∑

𝑥𝑖∈𝐵𝑉𝑥+𝑎∕2,𝑎

𝑉𝑖,

(8)

𝑇 2
𝑉 (𝑎, 𝑥) = 𝑉 (𝑥) − 1

𝑁𝑉
𝑥 (𝑎)

∑

𝑥𝑖∈𝐵𝑉𝑥−𝑎∕2,𝑥+𝑎∕2

𝑉𝑖. (9)

Obviously, 𝑁𝑉
𝑥 (𝑎) is directly proportional to the analysis

scale 𝑎 if the process is defined everywhere or is on a homo-
geneous support, and thus recovers straightforwardly, up to
the multiplicative constant, the classical wavelet coefficients.
The corresponding wavelets (equations 8 and ??) are implicitly
associated with the wavelet coefficients in the equations 6 and
7 and have a vanishing first-moment independent of the scale
𝑎 and the position 𝑥 ∈ Supp𝑠.
Two-dimensional case. For 2D process analysis, instead of
the Haar wavelet, it is classical to consider an extension of the
1D so-called top-hat wavelet, as proposed in[5]:

𝜓1(𝑥) = Π0(𝑥, 1) −
1
√

2
Π0,

√

2(𝑥) (10)

and 2D-wavelet coefficients read for this top-hat extension and
for the poor wavelets:

𝑇 1
𝑉 (𝑎, 𝑥) =

1
𝑁𝑉
𝑥 (𝑎)

∑

𝑥𝑖∈𝐵𝑉𝑥−𝑎∕2,𝑎

𝑆𝑖 −
1

𝑁𝑉
𝑥 (

√

2𝑎)

∑

𝑥𝑖∈𝐵𝑉𝑥+𝑎∕2,𝑎

𝑉𝑖,

(11)

𝑇 2
𝑉 (𝑎, 𝑥) = 𝑉 (𝑥) − 1

𝑁𝑉
𝑥 (𝑎)

∑

𝑥𝑖∈𝐵𝑉𝑥−𝑎∕2,𝑥+𝑎∕2

𝑉𝑖. (12)

2.3 Scaling exponents
Multifractal analysis then consists of estimating moments

𝑆 𝑖𝑞(𝑎) =
1

#{Supp𝑠}
∑

𝑥∈Supp𝑠 |𝑇
𝑖
𝑉 (𝑎, 𝑥)|

𝑞 of the obtained coef-
ficients. Linear regressions in a log-log representation of 𝑆 𝑖𝑞(𝑎)
vs. log 𝑎 permit to estimate scaling exponents 𝜁 𝑖𝑞 (eq. 1). The
scaling function of order 𝑞 = 2 thus yields the estimated Hurst
exponent: �̂� 𝑖 = 𝜁 𝑖2∕2.

3 Data on nonhomogeneous supports
Processes are defined in analogous manners for the 1D

and 2D cases. In what follows, support refers to the tempo-
ral/spatial distribution of available samples, while mark denotes
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Figure 2 – 1D analysis. Scaling of the moment of order
two of 𝑇 1

𝑉 (𝑎, 𝑥) (left) and 𝑇 2
𝑉 (𝑎, 𝑥) (right) obtained on the full

signal (𝑉𝑓𝑢𝑙𝑙, in black), and the nonhomogeneous signal (𝑉𝑟𝑎𝑤,
red), as well as on the interpolated signal by the sample mean
(𝑉0, magenta), nearest (𝑉𝑛, blue), and linear (𝑉𝑙, cyan) approx-
imations. The nearest approximation performs much better
than the other interpolation methods but still shows a deviation
from the original scaling. In contrast, our proposed method
(𝑉𝑟𝑎𝑤, red) provides a suitable approximation.

the amplitude value of the process.
Nonhomogeneous support. There are many ways to define
data on nonhomogeneous supports, as deviation from homoge-
neous data can be captured in at least two ways: The complexity
of the form of the support itself and the degree to which the sup-
port is lacunar. In the present work, we are mainly concerned
with the latter issue. We study a nonhomogeneous support
of a simple form defined according to the Poisson distribu-
tion, where the parameter 𝜆 controls the degree of lacunarity.
Scale invariance analysis for processes defined on nonhomo-
geneous supports (𝑉𝑟𝑎𝑤) is compared against scale invariance
analysis for processes defined on homogeneous supports, i.e.,
regular-grid sampling. Such signals are referred to as 𝑉𝑓𝑢𝑙𝑙 for
full-interval time series in 1D or full-raster images in 2D.
Mark. The synthetic process used here is fractional Brow-
nian motion (FBM), characterized by a unique regularity ex-
ponent 𝐻 . This is a Gaussian-centered signal with variance
one and stationary increments. This full signal 𝑉𝑓𝑢𝑙𝑙, of size
𝑁 , containing only known values, is used as the reference for
comparing the different analysis methods discussed here.
Interpolation. In the case of processes defined on a nonho-
mogeneous support, 𝑉𝑟𝑎𝑤, the original scale invariance analysis
proposed is compared against classical multifractal analysis
applied to the same data, yet interpolated on a regular grid,
thus on a homogeneous support. Three types of widely used
interpolation schemes are compared:
- 𝑉0: Each missing sample is replaced with 𝑉𝑟𝑎𝑤 sample mean.
- 𝑉𝑛: Each missing sample is replaced with the value of its
nearest neighbor.
- 𝑉𝑙: Each missing sample is replaced with the sample of the
field obtained by linear interpolation of available samples.
These interpolation schemes are implemented using the SciPy
package. Examples of the signals are shown in Figures 1 (1D)
and 3 (2D). Considering point processes in general, there are

Figure 3 – 2D signal. The homogeneous 2D fractional Brow-
nian field (𝑉𝑓𝑢𝑙𝑙) and the nonhomogeneous (𝑉𝑟𝑎𝑤) support as
well as the nearest (𝑉𝑛) and linear approximation (𝑉𝑙) proce-
dures performed to fill the missing values of the nonhomoge-
neous support (𝑉𝑟𝑎𝑤).

essentially two possible computational paths; the convolution
or k-nearest neighbors methods. The first chooses a resolution
and rasterizes the data into an image (which contains a prede-
fined percentage of unknown values). Using the convolution
method, for each scale 𝑎, one then computes the 𝑇 1

𝑉 (𝑎, 𝑥) and
𝑇 2
𝑉 (𝑎, 𝑥) coefficients according to (8) and (9), and for the 2D

case, 𝑇 1
𝑉 (𝑎, 𝑥) and 𝑇 2

𝑉 (𝑎, 𝑥) with equations (11) and (12). Ras-
terizing the image is computationally challenging for highly
nonhomogeneous samples, such as in geographic and environ-
mental studies. In addition, rasterization can result in the loss
of fine-scale information. Therefore, a second computational
method based on the k-nearest neighbors algorithm, also im-
plemented in the Python package LomPy, can be used, which
allows the analysis of nonhomogeneous data (𝑉𝑟𝑎𝑤) without
the need for rasterization.

4 Performance assessment
One-dimensional case. This section performs the multi-
fractal analysis by following the procedure described above.
The results for the one-dimensional case are shown in Fig. 2
using 𝑇 1

𝑉 (𝑎, 𝑥) (left column) and 𝑇 2
𝑉 (𝑎, 𝑥) (right column). The

logarithm of the second-order moments of the full signal (𝑉𝑓𝑢𝑙𝑙
in black) shows a linear behavior with respect to the logarithm
of the scale over the whole range of the observed scale range.
Scaling degraded for the three interpolated signals compared
to the full signal at small scales. The sample mean (𝑉0 in ma-
genta) drastically changes the slope toward −1. Interpolation
with linear approximation also deteriorates scaling (𝑉𝑙 in cyan)
where the slope goes to 2. The nearest approximation (𝑉𝑛 in
blue) and the method introduced here (without interpolation,
𝑉𝑟𝑎𝑤) give highly satisfactory results when 𝑇 1

𝑉 (𝑎, 𝑥) is used
but deteriorate significantly at small scales when 𝑇 2

𝑉 (𝑎, 𝑥) is
applied. This is confirmed by the bottom line of Fig. 2, where
we show the slope obtained by linear regression using all scales.
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We average the results for 20 different realizations and for six
different densities of the support. As the sparseness of the data
increases, biases in the estimation occur for all interpolation
methods. The sample mean approximation yields such poor
results that they fall beyond the reported value range. The re-
sults in the one-dimensional context suggest that interpolation
of the signal is unnecessary since working with the original
set of non-homogeneously distributed points alone (together
with the coefficient 𝑇 1

𝑉 (𝑎, 𝑥) introduced here) yields similarly
accurate results.
Two-dimensional case. In this section, we compare the
performance of the two proposed 2D wavelets (eq. 11 and 12)
on an FBM 𝑣(𝑥) process originally generated on a spatially ho-
mogeneous support (𝑉𝑓𝑢𝑙𝑙). The latter full image, the resulting
nonhomogeneous point process (𝑉𝑟𝑎𝑤), and the corresponding
interpolated images (𝑉𝑛 and 𝑉𝑙) are shown in Fig. 3. Note
that we do not consider the sample mean interpolation (𝑉0)
in the two-dimensional case due to the previously obtained
unsatisfactory results (see the performance assessment in 1D).
The obtained scaling of the 𝑇 1

𝑉 (𝑎, 𝑥) (eq. 11) and 𝑇 2
𝑉 (𝑎, 𝑥) co-

efficients (eq. 12) are displayed in the first line of Figure 4
where the dashed black line indicates the expected behavior.
In line with the 1D analysis in Fig. 2, the average slope (and
standard deviation) obtained by linear regression from twenty
independent 2D realizations are shown in the second line in
Fig. 4, where we applied an increasing percentage of missing
values. The border effect at large scales is significant with
𝑇 1
𝑉 (𝑎, 𝑥) and degrades the overall scaling. In contrast, results

with 𝑇 2
𝑉 (𝑎, 𝑥) demonstrate linear behavior over a broader range

of scales. Like the 1D case, interpolation with linear approxi-
mation deteriorates scaling, especially for small scales. The
scaling obtained by the method without interpolation using
𝑇 2
𝑉 (𝑎, 𝑥) (in red) follows the scaling obtained for the full image

(in black) very well. The same applies to the nearest approxi-
mation method using 𝑇 1

𝑉 (𝑎, 𝑥).

Figure 4 – 2D analysis. Long-range dependence analysis
using 𝑇 1

𝑉 (𝑎, 𝑥) (left column) and 𝑇 2
𝑉 (𝑎, 𝑥) (right column). The

first line shows the scaling obtained on the images (𝑉𝑓𝑢𝑙𝑙 in
black, nearest approximation 𝑉𝑛 in blue, linear approximation
𝑉𝑙 in cyan) and the no-interpolation method (𝑉𝑟𝑎𝑤 in red). The
dashed black line shows the theoretical behavior. The sec-
ond line shows the mean and standard deviation of the slope
estimates obtained from twenty independent realizations.

5 Conclusions
This article compared scale invariance analysis for processes

on nonhomogeneous supports, with and without interpolating
missing samples on a regular grid. For 1D signal, it was shown
that interpolation is unnecessary since the analysis of the origi-
nal set of (nonhomogeneously distributed) samples alone yield
similarly accurate results. For 2D images, the outcome de-
pends on the lacunarity of the support. For very lacunar sup-
port (when the density of missing values is large), best results
are obtained without interpolation and using 𝑇 2

𝑉 (𝑎, 𝑥) (eq. 12).
For raster-like supports (thus with few missing samples), near-
est neighbor interpolation and classical analysis with 𝑇 1

𝑉 (𝑎, 𝑥)
wavelet coefficients (eq. 11) is the most favorable procedure.
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