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Résumé – Les sciences modernes de l’observation telles que la géophysique, l’astrophysique, l’imagerie médicale, etc. produisent
un volume énorme de données de haute dimension. Une approche puissante pour analyser ces données et récupérer des informations
d’intérêt utilise le formalisme bayésien pour inverser des modèles physiques. Dans cet article, nous montrons l’application d’une
méthode basée sur une approche statistique de régression inverse - GLLiM - qui a l’avantage de produire des distributions
approximant les lois à posteriori cibles. Ces distributions peuvent également être utilisées pour des prédictions plus fines à l’aide
d’un échantillonnage d’importance tout en fournissant un moyen de mieux explorer le problème inverse lorsque plusieurs solutions
équivalentes existent et d’effectuer une estimation du niveau d’incertitude. Dans cet article, notre objectif est de présenter une
application de GLLiM à l’analyse d’une séquence d’images hyperspectrales acquises depuis l’espace pour la même scène martienne
et de présenter le logiciel PlanetGLLiM.

Abstract – Modern observational sciences such as geophysics, astrophysics, medical imaging, etc. produce huge volumes of
high-dimensional data. One powerful approach to analyse such data and retrieve information of interest is Bayesian formalism to
inverse physical models on the data. In this paper, we show the application of a method based on a statistical inverse regression
- GLLiM- that has the advantage to produce full probability distributions as approximations of the target posterior distributions.
These distributions can also be used for further refined predictions using importance sampling while also providing a way to better
explore the inverse problem when multiple equivalent solutions exist and to carry out uncertainty level estimation. In this paper, we
present an application of GLLiM for the analysis of a sequence of hyperspectral images acquired from space for the same Martian
scene and present the PlanetGLLiM software.

1 Introduction
Sensors aboard observation platforms in orbit around the

Earth and other planets of the Solar System return huge vol-
umes of data. The latter result from measurements that are
high-dimensional covering space, wavelengths, time, angles,
etc. in different spectral domains and different regimes (re-
flection, emission, active sensing). Retrieving the information
of interest from such data consists of inverting a direct or
forward model, which theoretically describes how parameters
of interest x ∈ X are translated into observations y ∈ Y .
In remote sensing, the observations y are high-dimensional
(of dimension D) because they represent signals in time, an-
gles or wavelengths. Besides, many such high-dimensional
observations are available and the application requires a very
large number of inversions (denoted by Nobs in what follows).
The parameters x to be predicted (of dimension L) is itself
multi-dimensional with correlated dimensions. In [5] a learn-
ing technique is put forward with a Bayesian framework ca-
pable of solving the problem of inverting physical models
on multi-angular data in order to estimate the value of their
parameters. The method addresses: 1) the large number of
observations to be analysed, 2) their high dimension, 3) the
need to provide predictions for several correlated parameters,
4) the possible existence of multiple solutions and 5) the re-
quirement to provide the latter with a confidence measure (e.g.
uncertainty quantification). Here, we present a planetary ap-
plication of the statistical inversion method implemented as
a high-performance, documented, and open-source software

PlanetGLLiM i across multiple platforms as docker images.
We analyse series of hyperspectral images acquired in the visi-
ble and infrared at different angles over regions of interest at
the surface of Mars. The dimension D is greater than L, with
L typically smaller than ten and D up to a few hundreds, while
the number of observations to be inverted Nobs can be of the
order of a few millions.

2 Hyperspectral images of Mars
In planetary science, information on the microtexture of sur-

face materials such as grain size, shape, roughness and internal
structure can be used as tracers of geological processes. This
information is accessible by remote sensing under certain con-
ditions thanks to multi-angular optical observations. Around
Mars, the CRISM instrument [6] acquires sequences of hyper-
spectral images in the visible and infrared from eleven different
angles when the Mars Reconnaissance Orbiter flies over a site.
Such observations are available for hundreds of Martian sites
of interest. In the seminal work of [3], the characterisation of
Martian materials by orbital spectrophotometry is conducted
at one wavelength only (750 nm) thanks to the MARS-ReCO
tool [1]. MARS-ReCO actually extracts a parametric model
of surface reflectance (BRDF RTLS) by atmospheric correc-
tion for 544 visible and near-infrared wavelengths and for a
network of several thousand points distributed over the scene.
The interpretation of the BRDF (Bidirectional Reflectance

i. documentation available here
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Distribution Function) extracted by "MARS-ReCO" in terms
of composition and microtexture is based on the inversion of
physical models of radiative transfer (Hapke and Shkuratov
models) linking in a nonlinear way physical and observable
parameters (functional y = F (x)). In this case y = yobs is a
vector of D reflectance values for D = 11 geometries, x is
vector of L = 4 or L = 6 photometric parameters. The great
number of observations Nobs, organized in data cubes, results
from the combination of spectral and spatial sampling of the
scene and is of the order of 106.

3 Inversion pipeline
From an experimental vector yobs of reflectance values, the

objective is to estimate the mean or the most probable value(s)
for each of the L parameters (the components of vector x)
of the physical model F and to provide a measurement of
uncertainty about the estimations. The PlanetGLLiM pipeline
performs the estimation in four steps:
1. The generation of a database of N couples DN =
{(xn, yn), n = 1 : N} using the direct physical model,
y = F (x). More specifically, xn values are simulated from
a chosen prior distribution, e.g. uniform over the parameter
range, and the direct model F is applied to produce F (xn) to
which a typically Gaussian noise is added to provide yn. F
is supposed to be available as a closed-form expression (see
section 4). Note that such a database can also come from real
observations of (x, y) couples if available.
2. The learning phase in which the pipeline constructs from
the database a direct and an inverse parametric statistical
model of the functional y = F (x). The learned model is
a Gaussian mixture model with a structured parameteriza-
tion referred to as GLLiM for Gaussian Locally Linear Map-
ping (see [2, 5] for details). Because it is trained on the
data from step 1, it depends on the physical direct model.
More specifically, GLLiM depends on a set of parameters
θ = {πk, ck,Γk, Ak, bk,Σk, k = 1 : K} which can be esti-
mated with a standard Expectation Maximisation algorithm. It
then provides approximations of both conditional distributions
p(x|y) and p(y|x) as K-component Gaussian mixtures. In
particular, in a Bayesian setting, the inverse model is then ap-
proximated by the following surrogate probability distribution
function (PDF) expression pGLLiM which is learned once, for
all possible yobs to be inverted,

p(x|y) ≈ pGLLiM (x|y) =
K∑

k=1

wk(y)N (x;Aky + bk,Σk)

with wk(y) ∝ πkN (y; ck,Γk) and where K is estimated from
the database using the Bayesian information criterion (BIC).
3. This surrogate model is then used for all vectors yobs (corre-
sponding to the spectral and possibly spatial dimensions of the
problem) in order to build a set of a PDFs pGLLiM (x|yobs).
4. The PDFs are then exploited each independently by differ-
ent techniques to estimate the solution x̂ corresponding to each
vector yobs: estimation by the mean/mode of the PDF, fusion
of the components of the Gaussian mixture model into a small
number of centroids (usually two or three) to identify possible
multiple modes (we consider up to 2 modes in the following),
importance sampling of the true target PDF p(x|yobs) with the

proposal distribution set to pGLLiM (x|yobs) around the mean
or around the centroids/modes, [5].

More specifically, for each vector yobs, there are six types
of estimations, provided by the GLLiM approximated distribu-
tion:

— pred_mean: prediction by the surrogate PDF mean.
— pred_center_1: prediction of the first PDF mode.
— pred_center_2: prediction of the second PDF mode.
— is_mean: importance sampling estimation of the true

PDF mean using the surrogate PDF as importance pro-
posal.

— is_center_1: importance sampling estimation of the first
true mode.

— is_center_2: importance sampling estimation of the sec-
ond true mode.

The analysis of our data cubes leads to different estimations of
the L physical parameters and corresponding uncertainties for
thousands of spatial points and hundreds of wavelengths that
are treated independently in each dimension. A joint process-
ing along the spatial and spectral axes can be envisioned to
take advantage of the continuity on the spatial and/or spectral
evolution of the parameters to be inferred. For example, the
solution obtained by GLLiM at a given wavelength (modes
and associated covariance matrices) could be used to calcu-
late a prior for the next wavelength according to a prognostic
model operator. There may be other ways to account for such
structured information but this is left for future investigations.

4 The Hapke radiative transfer model
The Hapke model is a radiative transfer model introduced

by B. Hapke in [4]. This model makes it possible to explain a
reflectance measurement with relatively few parameters like
the absorptivity of the particles, their scattering cross sections,
their phase function and the macroscopic roughness of the ma-
terial. The model proposed in [4] links the physical parameters
(w, b, c, θH , B0, h) (see Table 1 for details) to the bidirectional
reflectance by the following formula:

R(i, e,G) =
w

4π

µ0eG(θH)

µ0eG(θH) + µeG(θH)

[PG(α, b, c)(1 +BG(B0, h) +M(µ0eG(θH), µeG(θH))]

× SG(i, e, α, θH) (1)

G encodes the geometric measurement configuration as a set
of 3 angles characterizing the planetary surface illumination
and observation: the incident i and emerging e angles (µ0 and
µe their cosines), and phase α the angle between the scattering
and incidence directions. The functions PG, M , BG, and SG

express respectively the single and multiple scattering of light
within the granular medium, the opposition effect at small
phase angles, and the anisotropy of the reflectance due to
roughness.

5 The PlanetGLLiM software
We applied the GLLiM method to inverse the Hapke physi-

cal model on the CRISM data using the PlanetGLLiM soft-
ware. It is an application specifically tailored to handle in-
versions of reflectance models given cubes of multi-spectral
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Symbol Parameter Physical meaning Range

ω Single scattering albedo Scattering at the grain level [0 , 1]
b Anisotropy parameter b=0 isotropic scattering b=1 directional scattering [0 , 1]
c Backward or forward scattering coefficient c > 0.5 backscattering c < 0.5 forward scattering [0 , 1]
θH Photometric roughness Mean slope angle averaged on all scales [0° , 90°]
B0 Amplitude of the shadow hiding opposition effect Opacity of the grains [0 , 1]
h Width of the shadow hiding opposition effect Porosity of the granular medium [0 , 1]

Table 1 – Description of the Hapke parameters

data and geometries typically produced by planetary remote
sensing. PlanetGLLiM offers an easy to use graphical user
interface and implements the Hapke and the Shkuratov models.
Custom models can be added by the user in the form of a
single Python class. The application is built around a computa-
tionally efficient kernel, implemented in C++, that can handle
situations where the signals to be inverted present a moder-
ately high number of dimensions and are in large numbers.
The kernel, called Kernelo, can be used as a C++ library or
a Python module, and as such it can be used to inverse other
problems having direct models but unrelated to reflectance or
remote sensing. Both PlanetGLLiM ii and Kernelo iii are open
source and freely available under the CeCILL license.

6 Data analysis: an illustration
In [5] a validation of the GLLiM method is performed by

inverting the 6 parameter Hapke model on controlled synthetic
data with GLLiM and two MCMC schemes. This allows a
quantitative comparison of the different predictions based on
the prediction errors with the reference xobs and on the recon-
struction errors with the synthetic yobs vectors. In this section,
we further illustrate the capabilities of the GLLiM method by
applying it to the analysis of a CRISM multi-angular sequence
of hyperspectral images (sec. 2) identified by FRT0000B385
to recover surface granularity.

The target is a semi-circular depression in the Eos Chasma
of Valles Marineris (Fig. 1). Of special interest is the mineral
hematite (a mineral specie composed of iron(III) oxide with
the formula Fe2O3) that is concentrated on the adjacent raised
plateau and the depressed terrains that surround it. Also out-
crops of high albedo terrain rich in sulfate-bearing material can
be distinguished. Note that hematite on Mars is widespread in
dust in nanophase form, with crystals only tens of nanometers
in size. There are also fine-grained (red) and coarse-grained
(gray) hematite that exhibit absorption features around 0.5 and
0.9 µm. The latter type of hematite is the byproduct of the
interaction of an acidic fluid with basaltic rocks that occurred
in aquifers hundreds of millions years ago below the Mar-
tian surface. This byproduct is usually found in sulfate-rich
sedimentary materials like those present in Eos Chasma.

Our objective is to get information on the microtexture of
the surface materials of the scene targeted by FRTB385 such
as grain size, shape, roughness and internal structure. For this
observation MARS-ReCO extracts a parametric model of sur-
face bidirectional reflectance for 1648 pixels distributed across
the scene and for 344 wavelengths between 0.44 and 2.60

ii. link PlanetGLLiM
iii. link kernelo

Figure 1 – Classification map superimposed on a context CTX
image of a semi-circular depression in the Eos Chasma, Mars.
The classification of the terrains is based on a kmeans clus-
tering of their CRISM photometric curves at a wavelength of
755m.

microns (i.e. Nobs = 566912). The kmeans clustering of the
photometric curves at a wavelength of 755 nm, defined as the
series of reflectance values calculated at this wavelength with
the model for the 11 geometries of the CRISM observation,
leads to 5 classes of terrains (Figure 1). The latter are meaning-
ful since they are spatially correlated to geological structures.
The Hapke model (1) is massively inverted on the full sur-
face dataset according to the method described in Section 3.
We note that for a large majority of yobs the reconstruction
error obtained with the posterior mean is_mean is lower than
the error with the centroids is_center_1 or is_center_2. That
means that the posterior pdf is unimodal with a quite large lobe.
Then, we calculate from the individual results, the mean spec-
trum of each Hapke parameter for the different terrain classes.
The error bars are estimated on the basis of the root mean
square of the pixel-wise uncertainties. We note an excellent
continuity in the spectral domain even though the analysis is
performed independently for each wavelength, which suggests
the physical validity of the solutions. As an example, the single
scattering and photometric roughness mean spectra are given
in Figure 2 for the hematite rich terrains (blue class). The for-
mer parameter, which is directly related to optical properties
of the constitutive materials, shows very clearly the distinctive
shape and absorption band of grey hematite at 1 µm. The
photometric roughness is intermediate between that of dust
and that of basalt sand. The micro-texture can be qualitatively
interpreted based on a comparison between the retrieved phase
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Figure 2 – Spectrum of the Hapke parameters ω and θH averaged over the blue terrain class. Uncertainties are indicated as error
bars.

function properties of the terrain classes and that of reference
materials measured in the laboratory. Figure 3 shows clearly
that the hematite bearing materials are strongly backward scat-
tering at visible wavelengths where internal absorption is high
and becomes significantly forward scattering in the shortwave
infrared from which a moderately rough and clear grains can
be inferred. This type of texture was observed by the Mars
Exploration Rover Opportunity for similar outcrops. Indeed
the microscopic image presented in the inset of Figure 3 shows
loose hematite spherules 4-6 mm in diameter on an outcrop of
sediments at Eagle Crater.

7 Conclusion
We have presented and illustrated the application of a statis-

tical inversion method leveraging direct reflectance model for
the analysis of high-dimensional remote sensing observations
of planet Mars. The approach shows interesting capabilities
both in terms of computational efficiency and inference of
physically realistic, possibly multiple, solutions. The method
allows, in particular, to recover not only mineral composition
of Martian soil but also an estimation of granularity. We show-
case the use of PlanetGLLiM, an open-source software tailored
to handle inversions of reflectance models. Our results on the
CRISM data contribute to the understanding of the geology
and the formation of surface rocks on Mars.
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