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Résumé – Ces dernières années, les approches basées sur l’apprentissage profond ont obtenu des performances de pointe pour solution-
ner de nombreux problèmes d’imagerie inverse allant de l’imagerie médicale à la photographie computationnelle. Ces méthodes nécessitent
généralement des paires de signaux et mesures pour l’apprentissage. Cependant, pour divers problèmes d’imagerie, nous avons généralement
accès qu’à des mesures comprimées des signaux sous-jacents, rendant l’approche basée sur l’apprentissage compliquée, voire impossible car
les observations compressées ne contiennent pas d’information dans l’espace nul de l’opérateur de détection directe. Le récent cadre d’imagerie
équivariante surmonte cette limitation en exploitant l’invariance aux transformations (translations, rotations, etc.) présentes dans les signaux na-
turels. Dans cet article, nous exploitons ce nouveau cadre d’apprentissage non-supervisé pour reconstruire des données d’une camera mono-pixel
à partir de mesures compressées uniquement. Une série d’expériences montre que la méthode proposée a des performances comparables à celles
de l’approche supervisée standard.

Abstract – In recent years, learning-based approaches have obtained state-of-the-art performance in multiple imaging inverse problems rang-
ing from medical imaging to computational photography. These methods generally require pairs of signals and associated measurements for
training. However, in various imaging problems, we usually only have access to compressed measurements of the underlying signals, hindering
this learning-based approach. Learning from measurement data only is impossible in general, as the compressed observations do not contain
information in the nullspace of the forward sensing operator. The recent equivariant imaging framework overcomes this limitation by exploiting
the invariance to transformations (translations, rotations, etc.) present in natural signals. In this paper, we leverage this novel unsupervised
learning framework for reconstructing single-pixel imaging data from compressed measurements alone. A series of experiments show that the
proposed method performs comparably to the standard supervised approach.

1 Introduction
Linear inverse problems consist of reconstructing a signal

x ∈ X ⊂ Rn from incomplete and noisy measurements y ∈
Rm, that is

y = Ax+ ϵ (1)

where A ∈ Rn×m is the forward sensing operator and ϵ is the
noise affecting the measurements. This is generally an ill-posed
task due to the incomplete forward operator A with m < n (or
m = n with a large condition number) and the noise affecting
the measurements. In order to reconstruct the signals, we need
knowledge about the signal distribution and its support X .

Classical approaches assume a signal distribution using some
prior knowledge about the underlying signals x. For example,
the well-known total variation model [1] is built on the prior
belief that natural images are approximately piecewise smooth.
This strategy often yields a loose description of the true model,
providing biased and/or suboptimal reconstructions. In recent
years, this approach has been replaced by learning the recons-
truction mapping y 7→ x directly from data.

Despite the appeal and better performance of the learning-

based approach [2], in many sensing applications we can only
access incomplete measurements y, resulting in a chicken-and-
egg problem : in order to reconstruct x we require knowledge
about the signal model, but to learn this model we require ground
truth training data x. Moreover, if the measurement process A
is incomplete, it is fundamentally impossible to learn the si-
gnal distribution through only measurements y, as there is no
information about the set of signals X in the nullspace of A.
The recent equivariant imaging (EI) framework [3, 4], showed
that this fundamental limitation can be overcome by exploiting
the invariance of typical signal sets to transformations, such as
translation, rotation or scaling.

In this paper, we extend the EI framework to compressive
single-pixel imaging [5, 6]. This modality relies on a single de-
tector and is used in applications where standard cameras with
arrays of detectors are very expensive or impossible to build,
such as sensing in the non-visible spectrum or ultrafast ima-
ging [6]. In these applications, ground-truth signals x may be
expensive or impossible to obtain, thus learning from single-
pixel measurements alone is very important. The proposed me-



thod only requires compressed measurements for training and
obtains a similar performance to fully supervised approaches.

2 Preliminaries
We begin with some basic definitions. As the number of

measurements is lower than the dimension of the signal space,
i.e., m < n, the operator A has a non trivial nullspace, de-
noted by NA ⊂ Rn. The pseudo-inverse of A is denoted by
A† ∈ Rn×m. The learning task consists of estimating the pa-
rameters θ ∈ Rp of a reconstruction function fθ : Rm → Rn

such that fθ(y) ≈ x for all x ∈ X , by minimising a training
loss L : Rp 7→ R :

argmin
θ

L(θ). (2)

The reconstruction mapping fθ is modeled as a deep neural net-
work where θ are the weights and biases. We now discuss the
choice of L(θ) in the context of supervised and unsupervised
learning.

Supervised Learning Standard learning methods learn the
parameters θ using a dataset composed of N pairs of signals
and associated measurements (xi, yi), by minimising the follo-
wing supervised loss

LSup(θ) =

N∑
i=1

∥xi − fθ(yi)∥2. (3)

However, in many real-world settings, such as medical and as-
tronomical imaging, obtaining ground-truth signals xi can be
very expensive or even impossible.

Unsupervised Learning In settings where we have access to
only measurement data yi, it is still possible to train the recons-
truction function by enforcing measurement consistency, i.e.,

LMC(θ) =

N∑
i=1

∥yi −Afθ(yi)∥2. (4)

Unfortunately, this approach is ill-fated if A has a non-trivial
nullspace, as there are multiple possible reconstruction func-
tions that satisfy measurement consistency :

Proposition 1 (Proposition 1 in [3]). Any reconstruction func-
tion fθ(y) : Rm 7→ Rn of the form

fθ(y) = A†y + v(y) (5)

where v(y) : Rm 7→ NA is any function whose image belongs
to the nullspace of A verifies the measurement consistency re-
quirement.

In other words, the measurement consistency loss doesn’t
contain any information about X in NA. We require some ad-
ditional prior information about X in order to learn from mea-
surement data alone, as we will show next.

3 Equivariant Imaging
Recently, the EI framework [3] showed that invariance to

transformations, such as translations, rotations or reflections,
can be enough to learn from measurement data alone. A si-
gnal set X is invariant to a group of invertible transformations
T1, . . . , T|G| ∈ Rn×n, if for all x ∈ X , then Tgx also belongs
to X for all g = 1, . . . , |G|. Most natural signals present inva-
riance to a certain group of transformations. For example, sets
of natural 2D images are generally assumed to be invariant to
shifts, rotations and/or reflections.

Under the invariance assumption, we have

y = Ax = ATgT
−1
g x = Agx

′ (6)

for g = 1, . . . , |G|, where Ag = ATg and x′ = T−1
g x belongs

to the signal set. Thus, the invariance of X provides implicit
access to the operators Ag with potentially different nullspaces,
allowing us to learn beyond the nullspace of A.
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FIGURE 1 – Equivariant imaging systems. If the set of si-
gnals is invariant to a certain set of transformations, the com-
position of imaging operator A with the reconstruction function
fθ should be equivariant to these transformations.

As illustrated in Figure 1, due to the invariance of X , the
composition of the forward operator and reconstruction func-
tion fθ ◦A must be equivariant to the group of transformations,
that is

fθ(ATgx) = Tgfθ(Ax) (7)

for all x ∈ X and g = 1, . . . , |G|. The equivariant constraint
on fθ ◦ A can be enforced using the following (unsupervised)
loss [3] :

LEQ(θ) =

N∑
i=1

1

|G|

|G|∑
g=1

∥fθ(ATgx̃i)− Tgx̃i∥2 (8)

where x̃i = fθ(yi) for all i = 1, . . . , N . Taking into account
both measurement consistency and equivariance of fθ ◦ A, the
equivariant imaging (EI) loss [3] is given by LEI(θ) = LMC(θ)+
αLEQ(θ), where α is a hyperparameter which controls the trade-
off between equivariance and measurement consistency.

Analysis Under the assumption of invariance and noiseless
measurements, i.e., y = Ax, we have

Ey{LMC(θ)} = Ex{
1

|G|
∑
g∈G

∥ATgx−Afθ(ATgx)∥2}. (9)



Using the equivariance constraint in (7) we get

Ey{LMC(θ)} = Ex{
1

|G|
∑
g∈G

∥ATgx−ATgfθ(Ax)∥2} (10)

= E(x,y){∥M (x− fθ(y)) ∥2} (11)

where

M =
1

|G|

 AT1

...
AT|G|

 . (12)

It is easy to see that the standard supervised loss in (3) is obtai-
ned by setting M as the identity matrix. If M has rank smaller
than n, the unsupervised loss does not penalize reconstruction
error in the nullspace of M . Thus, a necessary condition for
unsupervised learning is that M ∈ Rm|G|×n is of rank n :

Proposition 2 (Theorem 1 in [3]). A necessary condition for
identifying the signal model X from compressed observations
is that the matrix in (12) is of rank n.

A detailed analysis of necessary and sufficient conditions for
model identification can be found in [7].

3.1 Handling Noise with SURE
In most sensing applications, the observed measurements are

corrupted by noise. The performance of the standard EI me-
thod degrades with the amount of noise affecting the observa-
tions, as the the measurement consistency loss LMC(θ) does
not prevent fθ from overfitting the noise. However, if the noise
distribution is known, we can correct the measurement consis-
tency loss using Stein’s unbiased risk estimator (SURE) [4],
such that the corrected loss is an unbiased estimator of the
oracle measurement consistency with pairs of noiseless and
noisy measurements (ui, yi), i.e.,

Ey{LMC-SURE(θ)} = E(u,y){
1

m
∥u−Afθ(y)∥2}

where ui := Axi are the noiseless measurements. If the noise
is iid Gaussian, the SURE loss is given by

LMC-SURE(θ) =

N∑
i=1

1

m
∥yi −Afθ(yi)∥2 −σ2 +

2σ2

m
∇ ·hθ(yi)

(13)
where hθ = A ◦ fθ and ∇· is the divergence operator. For cer-
tain fθ, computing the divergence can be challenging, so we
instead approximate it using the Monte Carlo approach intro-
duced by Ramani et al. [8], which only requires an additional
evaluation of fθ.

The SURE method can be applied to a large family of noise
distributions : for example, expressions for Poisson and Poisson-
Gaussian noise distributions can be found in [4]. The robust
equivariant imaging (REI) loss is obtained by replacing LMC(θ)
by the SURE-corrected one in LEI(θ), that is,

LREI(θ) = LMC-SURE(θ) + αLEQ(θ). (14)

4 Single-Pixel Imaging
The single-pixel camera [5] is an imaging modality inspi-

red by compressed sensing which uses a single sensor to mea-
sure incoming light modulated by spatial masks. These masks
are programmable binary patterns which are set using spatial
light modulators, digital micromirror devices or LED arrays.
Each measurement obtained by the detector corresponds to the
scene filtered by a binary pattern. As measuring more patterns
requires longer acquisition times and more storage, generally
only a few patterns m ≪ n are used to reconstruct the scene.
Single-pixel cameras are particularly useful in settings where
standard detector arrays are prohibitively expensive such as
imaging non-visible spectra and ultrafast imaging. See [6] for
a recent survey about this modality.

There are multiple ways to select the patterns : popular choices
are iid random entries or Hadamard basis vectors [6]. Here we
focus on patterns with random iid entries, such that the entries
of the sensing operator are given by

Ai,j =

{
1√
n

with probability 0.5

− 1√
n

with probability 0.5
(15)

for i = 1, . . . ,m and j = 1, . . . , n. Due to the iid patterns,
the resulting forward operator is highly incoherent with most
groups of transformations, thus m ≥ n/|G| measurements are
generally enough to verify the necessary condition in Propo-
sition 2. For example, consider images of 28 × 28 pixels and
the group of 2D shifts (|G| = 784). The necessary condition
is fulfilled with probability 0.94 with just m = 1 pattern, and
probability 1 with m ≥ 2 patterns (estimated using 100 random
realizations of A).

5 Experiments
We evaluate the proposed method using the ‘0’ and ‘1’ digits

of the MNIST dataset. The dataset consists of 1000 images for
training, and 200 images for testing. The images have 28× 28
pixels, i.e., n = 784, and are normalised to have intensity va-
lues in [0, 1]. The single-pixel measurements are obtained using
patterns sampled according to (15) and corrupted by iid Gaus-
sian noise with standard deviation σ = 0.05. We compare the
following learning methods :

— Pseudo-inverse (A†y) : Linear reconstruction by applying
the pseudo-inverse to the observed measurements yi =
A†xi (baseline of no learning).

— Measurement Consistency (MC) : Training from only
compressed measurements yi using LMC(θ) in (4).

— Robust Equivariant Imaging (REI) : Training from only
compressed measurements yi using LREI(θ) in (14) with
the group of 2D shifts 1.

— Supervised (Sup) : Standard training using ground truth
pairs (xi, yi) using LSup(θ) in (3).

1. Note that the set of images of digits is approximately shift invariant.
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FIGURE 2 – Reconstructed test images with m = 78, 156, 235 patterns for the evaluated learning approaches. Networks trained
with measurement consistency only fail to provide good reconstructions, performing similarly to the linear pseudo-inverse. By
enforcing equivariance, the proposed unsupervised method obtains reconstructions close to the fully supervised setting.

We model fθ as the U-Net network in [3] and use the Adam op-
timizer for all learning approaches. In all cases, each gradient
step is performed using mini-batches of 4 images, and 3 trans-
formations per mini-batch in the case of REI (chosen randomly
from the set of |G| transformations). For the REI approach we
use α = 5. The experiment was performed for 3 different sen-
sing matrices with 78, 156 and 235 patterns respectively.

TABLE 1 – Average test PSNR in dB obtained by the evaluated
training methods for different number of patterns m.

m A†y MC REI Sup
78 10.5± 2.2 10.5± 2.2 20.3± 2.9 23.3± 3.8
156 10.9± 2.3 10.9± 2.3 23.0± 3.0 25.3± 3.6
235 11.5± 2.2 11.5± 2.2 24.4± 2.9 26.7± 3.4

Table 1 shows the average and standard deviation of the test
peak signal-to-noise ratio (PSNR) obtained by the different me-
thods. Figure 2 shows reconstructed test images. The unsuper-
vised MC training approach obtains the same performance as
the linear pseudo-inverse A†y, effectively failing to learn the
signal set. As discussed in Section 2, enforcing only measure-
ment consistency is not enough for learning the reconstruction
function. On the other hand, the proposed unsupervised REI
approach obtains a 10 dB improvement over the linear pseudo-
inverse, with an average PSNR which is approximately 2.5 dB
behind the fully supervised approach. Moreover, the REI ap-
proach obtains good reconstructions with as few as m = 78
measurements per image.

6 Conclusions and Future Work
We present a novel unsupervised learning approach for single-

pixel imaging, where the reconstruction mapping is learned
from measurement data alone. The proposed method can re-
constructing single-pixel measurement data by relying only on
weak invariance properties, and without imposing strong as-
sumptions on the signal distribution. The unsupervised approach

is especially important for scientific imaging applications where
the goal is to recover information with the smallest amount of
prior assumptions about the underlying signals.

We leave the implementation of the proposed method in a
real single-pixel imaging system for future work.
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