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Résumé – Un inconvénient communément admis du codage multiniveau, par rapport à une modulation codée avec entrelacement de bits, est
sa latence élevée : En effet, les niveaux doivent être décodés séquentiellement. Dans cet article, nous considérons des codes polaires pour coder
chaque niveau. Nous montrons que la latence de décodage du schéma multiniveau, utilisant le décodage par annulation successive avec liste pour
chaque code polaire, n’est que de 1.5 fois celle d’un seul code polaire, quel que soit le rapport signal sur bruit et le nombre de niveaux.

Abstract – A commonly assumed drawback of multi-level coding, compared to a bit-interleaved coded modulation, is its high latency: Indeed,
the levels must be decoded sequentially. In this paper, we consider polar codes to code each level. We show that the decoding time complexity of
the multi-level scheme, using successive-cancellation list decoding for each polar code, is only 1.5 times the one of a single polar code, regardless
of the signal-to-noise ratio and the number of levels.

1 Introduction
There exist two main techniques to build high-rate codes :

bit-interleaved coded modulations (BICM) [8] and multi-level
coding (MLC) [10][11][14]. On the one hand, a BICM cannot
achieve optimal performance from an information theory pers-
pective, even though the loss is sometimes insignificant. See
e.g., [7, Sec. VI.A] or [12, Sec. IV.A]. On the other hand, MLC
is theoretically optimal. Nevertheless, BICM have often been
preferred over MLC due to the following assumptions :

— Several binary codes have to be used with MLC : one for
each level. This induces a high complexity.

— The decoding latency of a MLC scheme is high because
the levels (i.e., codes) have to be decoded sequentially.

— The paradigm of MLC is sometimes considered more
complex.

As an example, we find the following sentences in the litera-
ture :

— In [12, Sec.IV.A] : “Note that the multi-stage architec-
ture introduces decoding latency to the higher levels ...
clearly, the latency and memory issues can be eliminated
simply by ignoring the conditioning (i.e., implementing
a BICM)”.

— In the introduction of [6] : “MLC has often been avoi-
ded in optical communications because of the potentially
high complexity induced by using separate bit-level codes
and the negative impact that multi-stage decoding has
on latency”.

Nevertheless, recent studies comparing both schemes tend to
reconsider these assumptions. See for instance [6].

In this work, we add a favorable argument for MLC. We
consider polar coding for each level with successive-cancellation
list decoding. We show that the decoding latency of MLC com-

bined with polar coding is similar to the one of a single polar
code with rate R = 1/2.

2 Time complexity of a polar decoder
To begin with, let us introduce the decoding time complexity

(TC), denoted by C, to model the latency. It is defined as the
number of time steps required to decode a codeword, where all
the parallelizable instructions are performed in one clock cycle.

2.1 Polar codes
As explained in [1], a polar code, introduced by Arikan in

[4], is defined by the following parameters : the block length
N = 2n, the rate R = K/N , and an information set A ⊆ [N ]
of cardinality K, where [N ] = {1, ..., N}. The elements of A
are the indices of the information bits and the one of [N ]\A
the indices of the frozen bits. The encoding for a polar code
of length N is performed via a modulo-2 matrix multiplica-
tion x = uGn, where Gn is the generator matrix of the po-
lar code (see [4]), u = [u1, ..., uN ] is the input vector, and
x = [x1, ..., xN ] a codeword. Hence, ui is an information bit if
i ∈ A and a frozen bit otherwise.

2.2 Successive-cancellation (list) decoding
We present the standard successive-cancellation (SC) deco-

der for polar codes. This decoder can be implemented as a mes-
sage passing algorithm on a tree.

Let Tn denote a binary tree of depth n and v a node in the
tree. The variables vp, vl, and vr refer to the parent node of v,
and the left and right child node of v, respectively.



The SC decoding algorithm works as follows over Tn. Let
Nv represent the size of a message at node v. Each node v
receives a message αv = {αv

1, ..., α
v
Nv
} from its parent node

vp, which contains Nv logarithm likelihood ratio (LLR). The
messages αvl and αvr , of length Nv/2, transmitted from v to
vl and v to vr, respectively, are computed as :

α
vl
i = 2arctanh(tanh(αvi /2)tanh(αvi+Nv/2)), 1 ≤ i ≤ Nv/2,
αvri = αvi+Nv/2 + (1− 2β

vl
i )αvi , 1 ≤ i ≤ Nv/2.

(1)

Bit estimates βv = {βv
1 , ..., β

v
Nv
} are passed from v to its

parent node vp. The message βv is computed from βvl and
βvr as :

If i ≤ Nv/2, βvi = β
vl
i ⊕ β

vr
i , if i > Nv/2, β

v
i = βvri−Nv/2

. (2)

The messages are shown on Figure 1 (left).
The message αro of the root node of the tree is the LLR vector
computed from the received vector y (the output of the chan-
nel) : αroi = log(P (yi|xi = 0)/P (yi|xi = 1)) . At a leaf node
v, βv = ûi = 0 if αv ≥ 0 and βv = 1 otherwise, where
1 ≤ i ≤ N is the index of the leaf node v.
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FIGURE 1 – Left : Messages involved in the SC decoding algo-
rithm. Right : Decoding tree T3.

For short and moderate block-length polar codes, the per-
formance of SC decoding can be improved via SC list (SCL)
decoding [13] : Instead of focusing on only one candidate, the
L most likely candidates are tracked. At an information leaf
node, both the bit values 0 and 1 are considered. Consequently,
the number of candidates (paths) doubles. Each path is asso-
ciated with a path metric (PM) and the L candidates with the
smallest PM are kept. The path metric PMij , corresponding
to estimate ûij of the i-th bit at the j-th path, is computed as
[5][3] : PMij =

∑i
k=1 log(1 + e

−(1−2ûkj
)αkj ).

2.3 Decoding Rate-1, Rate-0, and Rep. nodes
Let Iv be the set containing the indices of the leaf nodes that

are descendants to v. For a node v in Tn, if Iv ⊆ A, i.e., the
leaf nodes that are descendants to v are all information bits,
we say that v is a Rate-1 node. Similarly, if Iv ⊆ ([2n]\A),
i.e., the leaf nodes that are descendants to v are all frozen bits,
we say that v is a Rate-0 node. The decoding tree for n = 3,
as well as Rate-1 nodes (black) and Rate-0 nodes (white) for
A = {6, 7, 8}, are shown on Figure 1 (right).

It was shown in [1] that with SC decoding, Rate-0 and Rate-1
nodes can be efficiently computed without visiting the subtree
rooted at the given node. For a Rate-0 node v, the components
of βv are immediately set to 0 (assuming that the frozen bits

have value 0). The TC is 1. For a Rate-1 node (Lemma 1 in [1])
βv = 0 if αv ≥ 0 and βv = 0 otherwise. The TC is also 1.

These results on Rate-0 and Rate-1 nodes were extended to
the case of SCL decoding in [2][3]. For a Rate-0 node, no new
path is created. The PM of the L existing paths j of node v are
updated as : PMvj =

∑Nv
k=1 log(1+e

−αkj ).Hence, the TC is the
cost of adding Nv numbers, i.e., CRate-0(v) = log2Nv.

For a Rate-1 node, new paths are created. The PM of the
j-th path of node v is computed as : PMvj =

∑Nv
k=1 log(1 +

e
−(1−2βkj

)αkj ). Theorem 1 in [3] proves that only the L first
αkj

with the lowest value need to be considered for path split-
ting. Then, for all the surviving paths, for Nv − L ≤ k ≤ Nv ,
βkj

= 0 if αkj
≥ 0 and βkj

= 1 otherwise. Consequently, the
TC is CRate-1(v, L) = min(Nv, L).

In addition to these two categories of nodes, we also consider
Repetition nodes, where only the rightmost leaf is an informa-
tion bit. It is shown in [2] that the TC of a Repetition node v is
CRep(v) = 1 + log2Nv.

2.4 Decoding time complexity of polar codes

We make the following assumptions to compute the TC of
SCL decoding, summarized in Table 1. They are similar to the
one considered in [1, Sec. V].

Rate-1, Rate-0, and Repetition nodes are discussed in the
previous subsection.

For a non-leaf (standard) node v : One clock cycle is used
to calculate αvl (once αv is received). One clock cycle is used
to calculate αvr (once βvl is received). One clock cycle is used
to compute βv (once βvr is received). The time to wait the
messages from the child nodes is C(vl) + C(vr).

For a leaf node v : For a frozen-bit leaf node, there is no
path splitting. One clock cycle is used to set βv to 0 and to
update the PM. For an information-bit leaf node, there is a path
splitting. One needs to compute the values of the new paths,
and to sort and select the surviving paths (and compute βv).
For simplicity, we assume that it is done in one clock cycle as
for a frozen-bit leaf node.

Rate-1 node CRate-1(v, L) = min(Nv, L)

Rate-0 node CRate-0(v) = log2Nv

Repetition node CRep(v) = 1 + log2Nv

Standard node CStandard(v) = 3 + C(vl) + C(vr)

Leaf node CLeaf(v) = 1

TABLE 1 – Assumptions on the TC of each category of nodes.

For a given information set A, Algorithm 1 enables to com-
pute the TC of the polar code.

We assess the decoding TC for polar codes designed for the
Gaussian channel as follows. For rates 0 ≤ R ≤ 1, we find



Algorithm 1 TC of SCL decoding of a polar code.
Function TC(v, L,A)
//The first call of the function should be done with the root node
vro of Tn.

1: if v is a Leaf node then
2: TC = CLeaf(v)
3: else if v is a Rate-1 node (i.e., if Iv ⊆ A) then
4: TC = CRate-1(v)
5: else if v is a Rate-0 node (i.e., if Iv ⊆ ([N ]\A) ) then
6: TC = CRate-0(v, L)
7: else if v is a Repetition node then
8: TC = CRep(v)
9: else

10: TC = 3 + TC(vl, L,A) + TC(vr, L,A)
//left child node + right child node

11: end if
12: Return TC.

the set A (via density evolution 1), and we apply Algorithm 1.
The results are shown on Figure 2. As expected, the worst-case
rate is around 0.5, where A induces a structure without many
interesting Rate-1 and Rate-0 nodes. Significant improvements
are observed for lower and higher rates.
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FIGURE 2 – TC of the SCL decoder as a function of the rate of
the polar code with N = 512, 1024 and L = 4, 16. The codes
are designed for the Gaussian channel via density evolution.

3 Time complexity for polar MLC

3.1 Multi-level coding
The constellationX considered in this paper is aM -amplitude-

shift keying (ASK) constellation. The symbols of a M -ASK
constellation, where M = 2m, are X = {−2m + 1, ..,−3,−1,
+1,+3, . . . ,+2m − 1}. Hence, m is the number of bit levels.
Using the chain rule, the mutual information between the in-
put of the channel X and the output Y can be expressed as

1. No optimization on the location of the information bits is performed to
reduce the complexity.

I(X;Y ) = I(B1, B2, ..., Bm;Y ) =
∑m
i=1 I(Bi;Y |B1, ..., Bi−1),

whereBi denotes the random variable corresponding to the i-th
bit of the labelling considered. One bit level refers to the chan-
nel described by I(Bi;Y |B1, ..., Bi−1). When a binary code is
used to transmit information over this i-th level the coding rate
should be chosen to match 2 I(Bi;Y |B1, ..., Bi−1). Figure 3
shows the rates of the five bit levels of a 32-ASK constellation
with natural labelling (and with a uniform distribution of the
symbols 3) as a function of the signal-to-noise ratio 4 (SNR).

Note that if the rate is close to 1, the information does not
need to be coded as the mutual information equals the entropy.
If the level is coded, the code contains only information bits
and therefore is decoded as a (SC) Rate-1 node. If the rate is
close to 0, then the polar code contains only frozen bits. It is
decoded as a (SC) Rate-0 node. We observe that for any SNR,
we have either :

— One level with a low rate but greater than 0, one with a
high rate but smaller than 1, and all others close to 0 or 1.

— One level with a rate close to 0.5 and all others close to
0 or 1.

We recall that multi-stage decoding involves using the results
of the lower levels to decode the higher levels. Hence, the TC
of the MLC scheme is the sum of the TC of each level. Conse-
quently, with the above observation we expect the TC to remain
stable with the SNR and not significantly higher than the one
of a single polar code with rate R = 0.5.
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FIGURE 3 – Rate of each level for a 32-ASK constellation.

3.2 Time complexity of multi-level polar coding
We use Algorithm 2 to compute the decoding TC of the MLC

scheme. It consists in first finding the information set Ai for
each level i, then computing the TC of the corresponding polar
code with Algorithm 1, and finally summing the results of each
level (again, we recall that the levels are decoded sequentially).
Moreover, if the rate of a level is close to 0 or 1 (within ε, see
the algorithm), we set it to 0 or 1, as commonly done with MLC
schemes.

The result for a 32-ASK constellation with natural labelling
is shown on Figure 4. As expected, the decoding TC does not

2. In practice, a back-off which depends on the code used is applied.
3. If shaping is used, e.g., as in [9], the positions of the curves are slightly

shifted but this does not change the result in terms of TC.
4. Defined as Es/σ2, where σ2 the variance of the noise.



Algorithm 2 Decoding TC of a multi-level polar coded modu-
lation.
Input : SNR, ε, m,L.
//We take ε = 0.01.

1: Compute the rate of each level I(Bi;Y |B1, ..., Bi−1)(which
depends on the SNR).

2: Find the set of information bits Ai corresponding to
I(Bi;Y |B1, ..., Bi−1) for each level.

3: Set C = 0.
4: for 1 ≤ i ≤ m do
5: if Ri < ε then
6: C = C+ 1.
7: else if Ri > 1− ε then
8: C = C+ 1.
9: else

10: C = C+TC(vro, L,Ai) //Algorithm 1
11: end if
12: end for
13: Return C.

strongly depend on the SNR on thus on the data rate. Moreover,
we see that the TC of the MLC scheme is approximately 1.5
times the worst-case complexity of a single polar code.
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FIGURE 4 – Decoding TC for the MLC scheme with block
length N = 1024 and L = 16. The black curve is obtained by
summing the values of the grey curves for a given SNR.

4 Conclusions
In this paper, we investigated the decoding TC of a MLC

scheme where polar codes are used to code each bit level. On
the one hand, the TC of the optimized SCL decoder for a single
polar code varies significantly with the rate. In particular, it is
very low if the rate of the polar code is close to 1 or 0. On the
other hand, the rates of each level, if natural labelling with a
M -ASK constellation is used, are all close to 0 or 1, with the
exception of at most two levels. This holds even for large M
and regardless of the SNR. Consequently, the decoding latency
of multi-level polar coded modulations is only slightly higher
than the one of a single polar code.
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