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Résumé – L’apprentissage par transfert traite du problème de variabilité inter-individus. En interface cerveau-machine, cela désigne l’ensemble
de techniques qui vise à exploiter la connaissance acquise sur d’autres sujets ayant réalisé la même tâche mentale que celle en cours d’analyse chez
un nouveau sujet. La méthode TCA (analyse en composantes de transfert) recherche ainsi un espace de dimension réduite où les caractéristiques
des deux domaines (source, cible) sont proches au sens d’un certain critère. Dans ce papier, nous proposons une nouvelle méthode pour appliquer
la TCA en lien avec la géométrie Riemannienne dans le cas de système BCI-EEG. L’approche proposée permet de travailler nativement avec
des caractéristiques de type matrice de covariance. Les résultats sont démontrés sur un jeu de compétition BCI et sont supérieurs à ceux obtenus
lorsqu’on applique TCA sur des caractéristiques vectorielles de type (log)variance.

Abstract – Transfer learning deals with the problem of variability between subjects. In brain-computer interface (BCI), it aims at using the
knowledge of previous subjects having performed the same kind of experiments. Transfer Component Analysis (TCA) is a transfer learning
method that searches for a low-dimensional feature space which reduces the difference between domain distributions. In this paper, we propose
a novel manner to apply the TCA method in the Riemannian geometry. First, the method, originally proposed to be applied in the Euclidean
space, is tested to align the variance of the spatially filtered EEG epochs of different subjects. Then, the method is adapted to align covariance
matrix based feature. Our approach is applied on a publicly available MI BCI-database. Results indicate that our method gives better results than
the traditional TCA that is based on feature vectors.

1 Introduction

Brain-computer interface (BCI) transfer learning is currently
being actively investigated to reduce calibration times in EEG
experiments [1]. Indeed EEG is known to be highly non sta-
tionnary either in a cross-session or in a cross-subject man-
ner. In the cross-session case, both fluctuating mental states and
electrode contact impedance cause the EEG distribution to vary
between sessions. In the cross-subject case, variability can be
explained by head morphology and proficiency to perform a
task. Transfer learning allows us to use the knowledge of pre-
vious subjects having performed the same kind of experiments.
Zanini et al. [1] have proposed a Riemannian alignement by re-
centering the covariance matrices of each subject/session with
respect to a reference matrix. The same idea was originally pro-
posed in [2] for classification purpose. The authors in [3] have
proposed a Riemannian version of Procrustes analysis (RPA).
The method, after recentering the covariance matrices of both
source/target domains, further matches their dispersion and ap-
plies a rotation transformation. TCA has rarely been used for
BCI application. In [4], TCA was applied to EEG dataset for
emotion recognition. In [5], the authors proposed to reuse the
TCA projection matrix computed on a subset of data to trans-
form new data.
Tang et al [6] have recently extended the TCA method to ma-
trix form in order to make the method usable in the Riemannian
framework. But, the authors did not go for a full Riemannian
geometry treatment of the information as they use the Eucli-

dean distance in the kernel function.
In this paper, we propose to use the TCA method in the Rie-
mannian framework but in its traditional vector form. To do so
elegantly, we make change in the kernel function used in TCA
by including the Riemannian distance.
In this study, we are investigating transfer learning on a motor
imagery (MI)-BCI competition dataset [8] to demontrate the
benefits of the proposed approach.

2 Methods

2.1 Maximum Mean Discrepancy
The Maximum Mean Discrepancy (MMD) [9] between the N1

source observations (domain 1) and N2 target observations
(domain 2) is computed as the distance between their means

MMD = ‖m1 −m2‖2H (1)

where mc =
∑
n yncψ(un) and ync = 1/Nc if the n-th obser-

vation belongs to the c-th domain and 0 otherwise. Here ψ(u)
denotes some transformation applied to the feature vector u.
We note N = N1 +N2 the total number of observations.
Rearranging terms, one can write the MMD distance as

MMD = tr(KL) (2)

The symmetric kernel matrix K has for element
Kij = 〈ψ(ui), ψ(uj)〉H, the inner product in H between the



i-th and j-th observations.
The kernel matrix K can be written as

K = [KS,S ,KS,T ;KT,S ,KT,T ] (3)
= [KS ;KT ] (4)

where KS,S ,KT,T and KS,T are respectively the kernel ma-
trices defined on the source domain, target domain and cross
domains.
As an example of kernel functions, the linear kernel is simply

KL
ij = uTi uj (5)

Another popular kernel is the Gaussian kernel with elements

KG
ij = exp

[
−d

2
E(ui,uj)

2σ2

]
(6)

where dE(ui,uj) = ‖ui − uj‖2 the `2 norm between feature
vectors. The matrix L contains the domain information with
Lij =

∑
c yicyjc if the i-th and j-th observations belong to the

same domain and Lij = −1/(N1N2) otherwise.

2.2 Transfer Component Analysis
Transfer Component Analysis (TCA) [10] aims at finding

a projection/mapping matrix W (N × d) such that the linear
MMD of the projected feature set Z = KW is minimized.
Using Eq. (2), the linear MMD of the projected feature set is
written as

MMD = tr((ZZT)L) = tr(WTKLKW) (7)

TCA also imposes that the matrix W should be found such
that the covariance matrix of the projected features, ZTHZ, is
equal to identity matrix. H denotes theN×N centering matrix.
The final minimization problem for TCA is then set up as

φ(W) = tr(ZZTL) + λ‖W‖2F
= tr

[
WT (KLK+ λIN )W

]
(8)

s.t. ZTHZ = WTKHKW = Id.
where λ‖W‖2F is a regularization term used to ensure numeri-
cal stability.
TCA matrix solution W∗ contains the N -dimensional eigen-
vectors corresponding to the d lower eigenvalues of the gene-
ralized eigenvalue problem of (KLK+ λIn,KHK).

2.3 Classification
A last ingredient consists in exploiting the labels of the source

examples. Let denote the N1 × d (source) feature matrix Zs =
KSW obtained after TCA and denote the associated labelN1×
1 vector ys.
A supervised classification rule is built on the source training
set to predict source label ŷ = fθ(z). Because source and tar-
get distributions are close (in the sense of MMD), the decision
rule can be applied safely to the target set. In this paper, we use
a simple linear discriminant analysis (LDA) classifier but other
classifiers like logistic regression or SVM can be used instead.

2.4 Focus on the feature
In BCI, each bandpass filtered EEG epoch is summarized by

its (spatial) covariance matrix

C =
1

Nt − 1
XXT (9)

where X denotes the Nc×Nt matrix of the epoched EEG time
series,Nc andNt denote the number of electrodes and the num-
ber of samples respectively. Note that other covariance estimate
like the one from Ledoit-Wolf can be used here.
A popular feature to resume the EEG epoch is to consider the
variance of the spatially filtered EEG epoch, v = aTCa where
a is the Nc × 1 spatial filter. If several filters are used, one can
build the feature vector u that will represent the log variance
of the different filtered signals. For motor-imagery, CSP filters
are often used [7] and we use the Gaussian kernel KG (6) in the
TCA framework.The TCA features would then be Z = KGW.
Using the kernel trick, we observe that it is actually not neces-
sary to know the nonlinear mapping ψ since only the dot pro-
duct is needed to build the kernel matrix K. This gives us the
opportunity to use Riemannian geometry concepts and directly
work on covariance matrices instead of the feature vectors.
In this study, we will use the kernel

KR
ij = exp

[
−d

2
R(Ci,Cj)

2σ2

]
(10)

to generate TCA features as Z = KRW. Here d2R(Ci,Cj)
computes the distance between two symmetric positive defi-
nite (SPD) matrices, aka the spatial covariance matrices in a
given frequency band. In this work, we consider the usual af-
fine invariant Riemannian metric [2] but other metrics can be
chosen. The σ parameter will be selected as the mean (Eucli-
dean/Riemanian) distance among the source and target features
[11].
A slight modification of this method is to first whiten the co-
variance matrices for each domain. This can be achieved by
computing the Fréchet mean of all the covariance matrices of
one domain (without any label consideration) [2].
The kernel is modified as

KwR
ij = exp

−d2R
(
C̃i, C̃j

)
2σ2

 (11)

where C̃k = G
−1/2
k CkG

−1/2
k and Gk is the domain barycen-

ter the k-th observation belongs to. This new kernel is identical
to the one in (10) except when observations come from dif-
ferent domains.

3 Results

3.1 Dataset
We used the dataset IIa from BCI competition IV [8] consis-

ting of the EEG data of 9 subjects performing 4 types of mo-
tor imagery tasks namely the movement imagination of the left



hand, the right hand, feet and tongue.
The experimental paradigm is defined as follows : A trial be-
gins with a fixation cross and an acoustic warning tone. Then,
a visual cue associated with an imagery motor task is shown on
the computer screen. The subject, seated in front of the screen,
performs the demanded task before a short break.
EEG signals were recorded at a sampling frequency of 250 Hz
using 22 electrodes and 3 EOG electrodes. Measurements were
performed in two sessions of two different days. Each session
consists of 72 trials per task (class).
In this study, we focus on left and right hand movement ima-
gery tasks. As in [12], session 1 is used as training session and
session 2 as a test session. EEG signals are band-pass filtered in
the frequency band of [8-30] Hz, then, epoched to [0.5-2.5] se-
cond interval relative to the cue time apparition. Variance and
covariance features are extracted on the obtained two-second
epochs before applying the TCA method.

3.2 Subject selection

Cross-subject TL can be influenced by both variability bet-
ween subjects and bad accuracy of the source subjects. Thus,
we focus only on ’good subjects’ [1], those with good accura-
cies and good generalization between sessions.
To identify such subjects, we simply learned a LDA classi-
fier on session 1 and applied it on the second session (without
any transfer). Features are log-variance after CSP filtering. The
mean classification accuracy between sessions given in Table
1 shows that the best results are obtained with subjects S1, S3,
S7, S8 and S9. The same subjects were obtained in [1] when
covariance matrices were used as features for the classification
of the four imagery motor tasks.
In the following, results will be given on this subset of subjects.
We note that some subjects are ’illiterate’ in the motor imagery
paradigm.

3.3 Selection of source domain

For the assessment of our approach, we need to build pairs
of source and target data. For each subject (seen as a target), the

FIGURE 1 – Selection of pairs of source and target when using
the recentered covariance matrices as features.

TABLE 1 – Mean classification accuracy using session 1 as trai-
ning set and session 2 as test set, and vice-versa. Here no TCA
is used to transfer between sessions.

Subject 8 3 9 1 7 4 6 5 2
S1S2 93.05 97.22 92.36 90.97 81.94 70.13 66.66 54.86 54.16
S2S1 98.61 91.66 93.75 81.25 75.69 64.58 67.36 58.33 50

Mean accuracy 95.83 94.44 93.05 86.11 78.81 67.35 67.01 56.59 52.08

source is selected as the subject that has the most similar fea-
ture distribution to it, in terms of MMD criterion. Fig. 1 shows
the MMD between all possible source-target pair when using
the recentered covariance matrices as features. The red squares
correspond to the closest source in terms of MMD. As expec-
ted, the features distribution computed in session 1 is closer to
the one computed in session 2 for the same subject than for any
other subjects. This shows that the MMD criterion is relevant
for the selection of source domain.
The sources selected for the classification based on the recen-
tered covariance feature are represented in Fig. 1 with green
squares. For instance the target Subject 1/session 2 will be pai-
red with the source Subject 7/session 1. Note that the MMD
criterion depends on the relevance of the features. For the log
variance feature vectors, the target Subject 7/session 2 is closer
to Subject 3/session 1 than itself in session 1.

3.4 Hyperparameter selection

For the hyperparameter selection {λ, d}, we adopted an em-
pirical approach. We vary the parameters values and we assess
for each value the classification accuracy. This can be seen as
a wrapper method. Best hyperparameter values are selected as
those giving the best median accuracy among all subjects.
The parameters λwas varied in {0.005, 0.01, 0.05, 0.1} and the
reduced dimension size d was varied in {2, 3, 4, 5, 6}
Fig. 2 illustrates the described approach when Riemannian ker-
nel KR is used in TCA. Table 2 gives the selected values for the
different feature types where log(var) refers to the case where
log-variance of the CSP filtered signals are used as features ;
cov and wcov refer to the covariance features and recentered
covariance features respectively.

FIGURE 2 – Median accuracy after TCA when using the cova-
riance matrices of EEG epochs as features



TABLE 2 – Selected values of hyperparameters
Features log(var) cov wcov

d 3 3 3
λ 0.1 0.01 0.01

3.5 Performance accuracy

A box plot for the variance based features before and after
applying TCA method is given in Fig. 3. We observe that TCA
has dramatically improved the results : the median accuracy
value has for instance increased from 50% to almost 80%. In

FIGURE 3 – Transfer learning with TCA (right) and without
(left). TCA is applied on log variance feature vectors (log(var)).

Fig. 4, we illustrate the LDA classification accuracies obtained
with different types of features when applying the TCA me-
thod. We observe that covariance-based features (recentered or
not) result in better accuracy that the variance-based features.
Recentering the covariance matrices has improved the classi-
fication performance : from a minimum performance value of
45%, we get a minimum value of 70% thanks to the Rieman-
nian recentering operation.

FIGURE 4 – TCA classification accuracy for different input fea-
ture type.

4 Conclusion

The paper successfully applies TCA transfer learning concepts
in the context of brain-computer interface. Covariance matrices

are easily handled using the kernel trick.However, it should be
noted that the TCA method requires the selection of some hy-
perparameters. The approach, used in this paper, uses all of the
test data which may lead to some bias in the results. In the near
future, an approach for hyperparameter selection that uses a
subset of test samples will be investigated. Moreover, the TCA
method will be tested on other datasets. Cross-session variabi-
lity will also be investigated.
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