
An Image Steganalysis Method Based on Evidence-Theoretic KNN
with a Small Sized Training Set
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Résumé – L’apprentissage en profondeur (deep-learning) est aujourd’hui largement utilisé en stéganalyse. Cepandant, cette approche nécessite
deux contraintes importantes: un jeu de donnés de grande taille et des ressources informatiques puissantes. À l’inverse, la recherche en stéganalyse
dans un environnement expérimental imparfait o, par exemple, le nombre des échantillons est limité, est jusqu’ici peu étudié. Nous proposons
ici une approche alternative au deep-learning pour la stéganalyse capable de fournir des résultats performants dans un environnement contitué
d’ensemble d’apprentissage de petite taille et nécessitant peu de puissance calculatoire. La méthode proposée combine la théorie des fonctions
de croyance par le biais d’une version crédibiliste de l’algorithme des K plus proche voisins et l’apprentissage d’ensemble. Le premier concept
transforme les distances entre l’image test et ses voisins en degrés d’évidence (masses). Au lieu d’utiliser directement cette masse pour la
classification, l’originalité du travail réside en l’utilisation d’une stratégie de type Ensemble Classifier: l’algorithme des K-PPV évidentiel est
appliqué dans différents sous-espaces de dimension réduite de l’espace de représentation. Pour chaque image testée, les masses issues de cet
algorithme sont alors fusionnées pour décider de la nature stéganographiée ou non de l’image. Les résultats expérimentaux montrent que cette
stratégie de type Ensemble Classifier permet d’optimiser les résultats de classification pas rapport à une approche standard et d’obtenir une
précision correcte avec un ensemble d’apprentissage de petite taille.

Abstract – Deep learning is widely used in current steganalysis, which requires an important factor: a large sized dataset. The research
of steganalysis with an imperfect experimental environment (such as limited samples) did not get enough attention. The paper proposes a
steganalysis method, which is applied with a small sized dataset, and without much computing. The proposed method combines evidence theory,
K-nearest neighbor algorithm (KNN) and ensemble learning. First a KNN classifier based on evidence theory is regarded as base learner, which
transforms the distances between the test image and its neighbors into degrees of evidence (masses), and it combines the masses among the
neighbors with Dempster’s combination rule. Then the combining rule is also applied in the ensemble learning method. The two-step combining
of evidence theory provides an advanced fusion strategy. In the end, the classification results are computed after transforming the masses into
probabilities. Experimental results show that the proposed method is able to obtain good accuracy with a small size training set.

1 Introduction

Steganography is an art of hiding information into a digital
medium in such a way that hidden information is imperceptible
to the third party [1]. Due to the high capacity of hidden infor-
mation and popularity on the Internet, digital images become
the most commonly used carrier in steganography. Meanwhile,
steganalysis is a method of detecting the presence of stegano-
graphy, which aims to determine whether a suspicious medium
contains hidden message. The image steganalysis has become
an essential branch of modern steganalysis.

In recent years, the image steganalysis which combines deep
learning is developing rapidly [3]. However, these steganalysis
methods require a big-sized dataset to train proper models, e.g.,
in [2] the experiments used 100,000 images as training set. To
“bring the steganalysis out of the laboratory” [4], the stegana-
lysis with a non-ideal experimental environment such as small

sized training set is worth to be explored. It is possible to pro-
pose a steganalysis with transfer learning, but actually the so-
lution in the literature did not use limited training set. It is an
open problem to apply transfer learning for image steganalysis
with small database.

The image steganalysis method proposed in this paper com-
bines evidence-theoretic KNN with ensemble learning: several
evidence-theoretic KNN base learners are computed using nu-
merous feature sets, in which each feature set is a subspace
of the original one’s. The paper is organized as follows: Sec-
tion 2 presents basic of evidence theory and evidential KNN
algorithm. Section 3 details the interest of ensemble learning
strategy in a reduced feature space and describes the proposed
algorithm. Section 4 provides experimental results before dis-
cussion and conclusion.
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2 The steganalysis based on KNN with
evidence theory

2.1 Evidence theory background
Evidence theory is a mathematical framework of describing

quantified beliefs brought by various hypothesis of a question [7].
In evidence theory, a limited set of mutually exclusive hypo-
thesis of a question is called a frame of discernment, deno-
ted by Ω. A basic belief assignment (BBA) m is defined as∑

A⊆Ωm(A) = 1. The hypotheses of an undetermined ques-
tion are represented by separated belief functions.

When several distinct and independent pieces of information
exist, one can combine information using fusion operator. Let
m1 and m2 be two normalized masses from distinct pieces of
evidence, which are defined under the same frame of discern-
ment Ω, and m is the mass combination result. According to
the Dempster’s combination rule [7], the mass m = m1 ⊕m2

is given by:{
m(A) = η

∑
B∩C=Am1(B).m2(C),∀A ⊆ Θ, A 6= ∅,

m(∅) = 0
(1)

and

η−1 = 1−
∑

B∩C=∅

m1(B).m2(C). (2)

where η is a normalization constant which represents the amount
of conflict between two BBAs.

Evidence theory is often used in the classification problems.
According to Smets [8], the decision about class membership
have to be taken in favor of one single hypothesis ωi of Ω using
the Pignistic probability function derived from the mass m:

BetP (ωk) =
1

1−m(∅)
∑

ωk⊆A

m(A)

|A|
∀ωk ∈ Ω (3)

where |A| denotes the cardinality of A. The simplest decision
rule selects the element of Ω with the highest pignistic proba-
bility.

2.2 ET-KNN for image steganalysis
The image steganalysis is to discriminate between innocent

images and suspected images i.e., cover images and stego images.
Based on evidence theory, the image steganalysis can be regar-
ded as a question of distinguishing the class of the images, with
the framework of discernment defined by Ω = {cover, stego}.

Assume there exists a test image described by an image fea-
ture vector s and x1, . . . , xk are its k neighbors in a well-known
training set. The image steganalysis based on evidence-theoretic
KNN (ET-KNN) [6] considers that each neighbor of an unla-
beled test image provides a piece of evidence: the shorter the
distance with the neighbor, the more likely the test image be-
longs to the same class as the neighbor. Thus, considering a
neighbor feature vector xi, a basic belief mass is computed by:{

mi(ωj) = α exp(γ.d(s, xi))
mi(Ω) = 1− α exp(γ.d(s, xi))

(4)

where ωj ∈ Ω is the class membership associated with xi, d is
the distance between s and its neighbor, γ is the reciprocal of
mean distance of each class, and 0 < α < 1 is a constant.

Based on [5], the tuning of γ has a meaningful influence on
classification. An optimization of γ is carried out by minimi-
zing an error function of training set, as described in [5]. The
evidence-theoretic KNN with an optimization procedure is na-
med as optimized evidence-theoretic KNN (OET-KNN). OET-
KNN usually considers only k neighbors of the learning test
image. Indeed, the more the distance between s and a neigh-
bor xi is high, the more the value mi(ωj) tends to zero and mi

becomes non-informative. Finally, the belief function that re-
presents our knowledge about s is given by using Dempster’s
rule on the k masses mi with m = m1 ⊕ · · · ⊕mk.

2.3 Limitations of OET-KNN for steganalysis
Applying OET-KNN directly on image training set with fea-

tures for steganalysis is possible. However, it will lead to two
drawbacks. Firstly, based on machine learning theory, as the
classifier OET-KNN, when it is applied with a testing set, the
variance caused by the peculiarities of one single training set
may very high. Therefore, it usually uses different training sets
to build a framework of ensemble learning to reduce the va-
riances, in which OET-KNN is viewed as a base learner. Since
the combination of base learners is capable of reducing the er-
ror rate, it is best to make the base learners as independent as
possible. With the fact that the training set size is limited, how
to maximize the diversity should be concerned. Secondly, the
original dimension of the image vector in steganalysis is nor-
mally very high. A basic truth is that the computation burden
shows a significant increase with the growth of the vector di-
mension. Therefore, how to reduce the feature set size should
also be taken into consideration.

3 The ensemble learning with evidence
theory fusion strategy

In traditional ensemble learning strategy of classification pro-
blem, each base learner provides binary results (e.g., 0 and 1),
then it uses a fusion strategy e.g., majority voting to calculate
the final results. As described in Section 2, the masses of each
test image is a piece of evidence, which shows how much the
current base learner supports to the test image. One can use
Dempster’s combination rule of evidence theory to combine the
masses from different base learners. The proposed steganalysis
method in this paper is called EN-OETKNN, which refers to
the image steganalysis method that combines OET-KNN with
ensemble learning.

3.1 Data pre-processing and distance calculation
Encountering with the situation of a small number of trai-

ning samples, the proposed method adopts the bootstrapping



selection rule to choose a training set. With size m image vec-
tors for training set, each time it selects size m image vectors
with replacement as a training set for each base learner.

Based on the feature extraction algorithm used in the ste-
ganalysis, the initial feature dimension is usually high, some
features are less meaningful and some feature effects are over-
lapped. Since there is no prior knowledge to distinguish which
features are more ‘valuable’, in this paper it chooses features
by using bootstrapping selection, the size of feature set is de-
termined through the optimization experiments. The features
of image vectors are correlated and in different scales. The
small scale features may also express the difference between
two class images, hence those features are as important as the
big scale ones. The Mahalanobis distance is applied to calcu-
late the distance between the test image and the training set.

3.2 The ensemble learning of steganalysis
Based on the ensemble learning and the multiple strategies

described previously, a steganalysis method is proposed and
illustrated in Fig. 1. After the processing of each base lear-
ner, the N base learners produce a mass matrix of size (N ,
n, 3), in which ‘3’ means three different classes(cover, stego,
and unknown). By evidence theory, the masses from different
base learners are under the same frame of discernment Ω, then
the masses of the same test image among different base lear-
ners are combinable. The combination can also be conducted
by Dempster’s combination rule.

FIGURE 1 – The steganalysis of EN-OETKNN

For test image s, assuming the final masses from base learner
Ti are mTi

s , then the one combines the masses with different
base learners, e.g., the combination of s from T1 to TN is:
mT1−TN

s = mT1
s ⊕mT2

s ⊕· · ·⊕mTN
s . According to TBM [8], the

mass values of each test image are transformed into pignistic
probability (BetP ). For each test image, BetPT1−TN (stego)
and BetPT1−TN (cover) are obtained. The final decision of
each test image is determined by the pignistic probabilities of
two classes (cover, stego) of the image. The steganalysis de-
cision results are illustrated in Table 1. TN, TP represent the
number of cover images and stego images which are classified
correctly, and accuracy = (TN + TP )/n, in which n is the
size of test set.

TABLE 1 – The classification result matrix

pignistic probability comparison cover image stego image
BetP (cover) > BetP (stego) TP FP
BetP (cover) < BetP (stego) FN TN

4 Experiments

The original images are from BOSS database (version: BOSSbase-
1.01) [9]. The stego images are embedded with different pay-
loads by using nsF5 [10] . The feature extraction algorithm
used here is CC-PEV [11], which extracts a 548-dimensional
vector from each image. The CC-PEV contains Cartesian Cali-
brated features and PEV features, which shows good ability to
manifest the effects of nsF5.

In the proposed method, there are two parameters need to
be optimized: the number of base learners and feature set size.
The tuning results of the two parameters are shown in Fig. 2.
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(b) Selection of the feature set size

FIGURE 2 – The parameter selection of the proposed method

In Fig. 2, the x-axis is parameters to be tuned, and the y-
axis is the accuracy. In the case of the same size training set,
the experiments set different number of base learners and dif-
ferent size feature sets. The parameters are considered optimal
or near optimal when the accuracy is getting stable. Therefore,
the number of base learners is set to 91, and the feature set size
of image vector is set to 300, which is smaller than the original
image vector dimension. As the number of the neighbors - the
k, it is found that k becomes less important after it exceeds a
certain size, so here the k is set to 101.

To illustrate the improvement of the proposed method, it is
compared with Kodovský’s classic steganalysis [14]. The trai-
ning set size is limited to 1000 intentionally to fit the subject
of small-sized training set. In order to avoid overfitting and
selection-bias, a 10-folds cross-validation is applied to obtain
the final accuracy. The embedding payload used are 0.1 bpAC
(bits per non-zero AC coefficient) and 0.2 bpAC. For each pay-
load, there are five different training sets. The accuracies of
the two methods by using the same training set are shown in
Fig. 3. From the figure, the proposed method is able to improve
the steganalysis effect when training set size is small.
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FIGURE 3 – The comparison between the proposed method
with Kodovský’s classic steganalysis method

Last but not least, we are proposing some discussions. The
Rich Model with modern steganography is also applied with
the proposed method. The experiments used S-UNIWARD [12]
as steganography algorithm, and used the variant of Spatial
Rich Model- maxSRMd2 [13] as the feature set. During the
experiments, it was found that the tuning of parameters should
be more careful. In the end, by using the same training sets,
when the payload is 0.1 bpp (bits per pixel) and 0.2 bpp, the
mean accuracies of the proposed method are 56.82% and 63.98
%, and accuracies by using Kodovský’s classic steganalysis are
55.80% and 63.16%.

To compared with an example of deep learning approach, the
same training set(cover and stego images) is applied in the SR-
net [15]. Unsurprisingly, the lack of the training samples gives
a bad accuracy. Recently the research by using transfer learning
on the small training set is getting attention. The transfer lear-
ning is also applied in the steganalysis [16], but the authors did
not apply the method with limited size training set. To compare
with the proposed method, we would like to make an explora-
tion in the future work.

5 Conclusion

The proposed steganalysis method combines the OET-KNN
with ensemble learning. Using combining rule of evidence to
combine the masses of neighbors, as well as the masses of base
learners, it shows more advantage in the ensemble learning fra-
mework. The experiments of comparison show that the propo-
sed method is performing well with small sized dataset. Deep
learning is a powerful tool in multiple fields, including stega-
nalysis. But the requirements of a large dataset is becoming
its obstacle. The ‘no-deep learning’ steganalysis is still worth
being explored.
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