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Résumé – De nos jours, nous assistons à une explosion du volume des données numériques produites dans le monde entier. La question de leur
archivage devient donc de plus en plus cruciale, tant pour pérenniser notre héritage scientifique et culturel que pour permettre leur réutilisation.
Ainsi, la recherche de solutions pour un stockage efficace à long terme des données "froides", c’est-à-dire des données peu ou plus utilisées,
suscite un intérêt de plus en plus grand. Des études récentes ont prouvé qu’en raison de ses propriétés biologiques, l’ADN peut être un excellent
candidat pour le stockage d’informations numériques, permettant également une conservation des données sur le long terme. Cependant, les
procédures biologiques de synthèse et de séquençage de l’ADN sont coûteuses, tout en introduisant d’importantes contraintes dans le processus
de codage. Dans cet article, nous proposons un schéma de codage adapté au stockage d’images sur ADN, qui respecte les contraintes introduites
par les procédures biologiques. D’autre part, la solution proposée permet de réduire les coûts introduits par la synthèse et le séquençage.

Abstract – Living in the age of data explosion, the research of solutions for efficient long term storage of the infrequently used "cold" data
is becoming of great interest. Recent studies have proven that due to its biological properties, the DNA is a strong candidate for the storage of
digital information allowing also data longevity. However the biological procedures of DNA synthesis and sequencing are expensive while also
introducing important restrictions in the encoding process. In this work we present a new constrained encoding method for the robust encoding
/decoding of images to be stored into DNA. Furthermore we study the possibility of fully retrieving the stored information using less sequencing
samples and consequently reducing the sequencing cost.

1 Introduction
Digital evolution has caused an immersive increase in the amount
of data that is being generated and stored. The digital universe
is forecast to grow to over 160 zettabytes in 2025. At the same
time studies show that after storage, 80% or more of this data
might not be needed for months, years, decades, or maybe ever.
The rising need for long-term storage for this kind of "cold"
data is becoming of great interest. Existing storage systems
suggest efficiency in capacity yet lacking in durability. Hard
disks, flash, tape or even optical storage have limited lifespan
in the range of 5 to 20 years. Interestingly, recent studies have
proven that it was possible to use synthetic DNA for the stor-
age of digital data, introducing a strong candidate to achieve
data longevity [7]. The DNA’s biological properties allow the
storage of a great amount of information into an extraordinary
small volume while also promising lossless and efficient stor-
age for centuries or even longer. DNA is a complex molecule
corresponding to a succession of four types of nucleotides (nts),
Adenine (A), Thymine (T), Guanine (G), Cytosine (C). It is
this quaternary genetic code that inspired the idea of DNA data
storage which suggests that any binary information can be en-
coded into a DNA sequence of A, T, C, G. The main challenge
lies in the restrictions imposed by the biological procedures of
DNA synthesis (writing) and sequencing (reading) which are

involved in the encoding process and introduce significant er-
rors in the encoded sequence while also being relatively costly
(several dollars for writing and reading a small strand of nu-
cleotides). However, encoding digital data onto DNA is not
obvious, because when decoding, we have to face the problem
of sequencing noise robustness. In [4] there has been a first at-
tempt to store data into DNA while also providing a study of the
main causes of biological error. In order to deal with errors pre-
vious works in [8] and [3] have suggested dividing the original
file into overlapping segments so that each input bit is repre-
sented by multiple oligos. However, this procedure introduces
extra redundancy and is poorly scalable. Other studies [2],[9]
suggest the use of Reed-Solomon code in order to treat the erro-
neous sequences while in [6] a new robust method of encoding
has been proposed to approach the Shannon capacity. Never-
theless, all the above works attempt to transcode a binary file
into a quaternary stream without taking into account the input
data’s characteristics. In this work, as an alternative, we pro-
pose a new efficient and robust encoding algorithm especially
designed for the DNA storage of digital images that we have
previously compressed using image compression techniques.
This allows to control the compression ratio by the way of an
optimal nucleotide allocation, and consequently to control the
DNA synthesis cost. Furthermore, we extended our study to
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Figure 1 – The general encoding

minimize the DNA decoding cost by optimizing the amount of
synthetic oligonucleotides necessary for a robust sequencing.
The paper is organized as follows. In section 2 we introduce the
general encoding process, highlighting the biological restric-
tions and the proposed solution for creating a robust DNA code
to synthesis and sequencing noise. In section 3.2 we propose
a study for optimizing the amount of oligonucleotides used for
decoding and show some results in section 3. Finally, section 4
concludes the paper and proposes some future works.

2 Encoding images on DNA
2.1 The proposed encoding workflow
The main goal of DNA data storage is the encoding of the in-
put data using a quaternary code composed by the alphabet
{A,T,C,G} to be stored into DNA. The general idea of our
proposed encoding process is depicted in figure 1 and can be
very roughly described by the following steps. Firstly, the in-
put image has to be compressed using a lossy/near lossless im-
age compression algorithm. More specifically we have used a
Discrete Wavelet Transform (DWT) with 9-7 filters [1], quan-
tizing each subband independently thanks to a uniform scalar
quantizer. Then, the compressed image subbands are encoded
into a sequence of A, T, C and G to be later synthesized into
DNA. The encoding procedure we developed in our work is
described in the next sections. Error in DNA synthesis and
yield of production can be well controlled when the oligonu-
cleotide size stays below 150 nts. This implies that the encoded
sequence needs to be cut into smaller chunks before it is syn-
thesized into DNA and stored into special small storage cap-
sules. DNA sequencing is the process of retrieving the stored
information by reading the content of the stored oligos. Unfor-
tunately this procedure is very error prone causing errors like
substitutions, insertions or deletions of nucleotides. In order
to deal with such errors, before sequencing, the stored data is
cloned into many copies using a biological process called Poly-
merace Chain Reaction (PCR) amplification. In addition to
this, during the sequencing, next generation sequencers (NGS)
like Illumina use the method of bridge amplification (BA) for
reading the oligos. As exlained in [10], BA is a process similar
to PCR, which allows nucleotide recognition while producing
many copies of each oligo introducing extra redundancy that is
necessary for the reduction of the sequencing error. As a result,
the data provided by the sequencer is multiple copies of each
input oligo that may contain errors. This implies the need of

Primer 1 S Payload P S Primer 2ID

26nt 1nt 75nt 4nt 1nt 1nt 21nt

H offset

6nt3nt

Figure 2 – Format of the oligos - S denotes the sense nucleotide
which determines whether a strand is reverse complemented when se-
quenced. P is a parity check nucleotide while the ID is an identifier of
the image so to be distinguished from other data that may be stored. H
is a specific header, Offset specifies the chunck’s data position in the
encoded sequence and Payload contains the encoded chunks.

choosing the good oligo copies before we reconstruct the ini-
tial sequence, concatenating the selected oligos and decoding
them to get back the stored image.

2.2 Biological restrictions
The encoding of digital data into DNA is highly restricted by
constraints imposed by the biological procedures of the DNA
synthesis and sequencing. To begin with, DNA synthesis is
an error free process when the sequence to be synthesized into
DNA does not exceed the length of 150 nts. As the sequences
get longer the synthesis error increases exponentially. This
yields the need for cutting the encoded data into smaller chuncks
so to reduce the synthesis error. Consequently, in order to
achieve reconstruction, special headers (noted H in figure 2)
need to be inserted into each of the encoded chuncks, contain-
ing information about the position of these data into the initial
encoded sequence. This formatting of the data is described by
figure 2. The DNA sequencing is the most challenging part
of the encoding procedure as it may introduce high percentage
of errors like insertion, deletion or substitution of nucleotides.
These errors can be reduced if the encoding algorithm respects
some particular rules in order to avoid ill-cases which can lead
to wrong recognition of nucleotides during the sequencing. The
biological restrictions are the following:

• Homopolymers: Consecutive occurencies of the same
nucleotides should be avoided.

• G, C content: The percentage of G and C in the oligos
should be lower or equal to the one of A and T.

• Pattern repetitions: The codewords used to encode the
oligos should not be repeated forming the same pattern
throughout the oligo length.

2.3 A biologically constrained quaternary code
In [5] we proposed a quaternary encoding algorithm which
takes into consideration all of the encoding restrictions described



in 2.2. Let Q(x) = f(α(x)) be the quantized values x̂i ∈ Σ
produced by the quantizer with i ∈ {1, ..., k} and Σ the quan-
tization codebook of size k. f is called the decoding function
and α(x) = i, i ∈ {1, ..., k}, the encoding function providing
the index of the quantization levels. In order to generate a DNA
code Γ we introduce two separate alphabets:

• D1 = {AT,AC,AG, TA, TC, TG,CA,CT,GA,GT}
• D2 = {A, T,C,G}
D1 is an alphabet composed by concatenations of two sym-

bols from D2 selected in such a way that no homopolymers or
high GC content is created. In order to encode the quantized
sequence onto DNA we define the code Γ as the application:
Γ : Σ → D? where D? is a dictionary composed by L ≥ 2k
codewords ci of length l. We denote Γ(x̂i) = ci the codeword
associated with the quantized value x̂i ∈ Σ. D? is constructed
by all the possible concatenations of symbols from D1 and D2
according to the following rules:

• Codes with codewords of an even length (l even) are be-
ing constructed selecting l

2 doublets from D1,
• Codes with codewords of an odd length (l odd) are being

constructed selecting l−1
2 doublets from D1 and a single

symbol from D2.
The quantization using big values of quantization step-size q
can lead to long repetitions of the same quantized value. The
use of existing algorithms for the encoding of such a sequence
into DNA would thus create pattern repetitions. In order to
avoid patterns, our algorithm uses a pseudorandom mapping
which associates a quantized value to more than one possible
codewords. More precisely our algorithm maps the index of
levels of quantization i to the codewords of D∗ as described
in figure 3. The code Γ is constructed so that each quantized
value in Σ is mapped to a set of different non-empty quaternary
codewords in D? following a one-to-many relation in such a
way that it is uniquely decodable. Since we ensure L ≥ 2k,
the pseudorandom mapping can at least provides two possible
codewords for one input symbol. More precisely, the mapping
is described by the following steps (interested reader can find
the complete algorithm in our paper [5]):

1. Build the corresponding codeD∗ of size L using all pos-
sible codewords of length l which can be built following
the two rules described previously,

2. Compute the number of times m that k can be replicated
into the total size L of the code D∗: m = bL

k c,

3. The mapping of the quantized value x̂i to a codeword ci

is given by: Γ(x̂i) = D∗(i+ rand(0,m− 1) ∗ k).

3 Experimental results
3.1 DNA synthesis and sequencing
In this study we have carried out a real biological experiment
for storing a Lena image of size 128 by 128 pixels into DNA.

Figure 3 – Mapping the quantized values from codebook Σ to code-
words of D∗

The choice of the size of the image was constrained by the high
expenses of the biological procedures involved in the experi-
ment. More specifically we have synthesized 662 oligos into
DNA, of size 138 nucleotides (nts) each (including primers).
This number of oligos corresponds to a compression ratio equal
to 2.68 bits/nt. For the sequencing, we used the Illumina Next
Seq machine, a sequencer which produces low percentage of
sequencing error. This machine uses PCR amplification and
Bridge Amplification which create many copies of the oligonu-
cleotides in order to ensure an accurate sequencing (see section
2). As detailed description of the sequencing procedure is out
of the scope of this work for further information the reader can
refer to [10]. However, although the robust code we proposed
in section 2.3 can reduce the sequencing error, it will not elim-
inate it. This means that after the sequencing process, some
oligonucleotides will contain errors due to wrong nucleotide
recognition. As the Illumina sequencers do not introduce high
noise percentage in the sequenced data we assume that only
a minority of those copies will finally be affected by error.
Thus, the most frequent oligonucleotides after sequencing are
assumed to be the correct ones.

3.2 Subsampling the sequenced oligos
As mentioned in previous sections the DNA synthesis and se-
quencing are expensive and can cost several thousands of dol-
lars depending on the size of the encoded data. On one hand, in
order to reduce the synthesis cost, we compress the input image
and control the coding rate thanks to a nucleotide-allocation
algorithm. By doing so, one can select an optimal rate which
shows no significant distortion in the visual result. On the other
hand, the sequencing cost can be decreased by reducing PCR
and BA cycles performed during the sequencing. This can be
simulated by subsampling the data set of sequenced oligos pro-
vided by our experiment. In the initial experiment we discarded
the oligos exceeding 91 nts as those oligos for the moment can
not be decodable. This resulted to a total number of 28,876,259
sequenced oligos, from which the initial encoded image should
be reconstructed. In this experiment we have subsampled this
initial number of oligos using different sampling sizes. For
each case, the most frequent oligos from the subsampled data
were selected as the most representative sequences and were
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Figure 4 – Visual results after decoding at different subsampling rates. Lena 128x128 pixels

used to decode and reconstruct the image.
Consequently, for the decoding, we have subsampled the se-

quenced data and reconstructed an image for each sampling
size. The procedure was repeated twenty times for each sam-
pling size and we computed the average of the Peak Signal to
Noise Ratio (PSNR) as well as the percentage of exact matches
when comparing the most frequent sequenced oligos with the
encoded correct ones. Those results are presented in figure 5
and provide information about the quality of the reconstruction.
In figure 4 we present the visual results for different sampling
rates as also the corresponding values of PSNR and SSIM.

Interestingly enough we observe that we can achieve a per-
fect reconstruction by using only a small percentage of the se-
quenced oligos provided by our experiment. More precisely
we can see in figure 5 that only using 5000 samples of the se-
quenced oligos we get 100% correctness when comparing to
the 662 original synthesised oligos. Taking into account the
initial number of amplified data (28,876,259 oligos) we con-
clude that only 0.0173% of those oligos are needed for perfect
decoding. This can be confirmed by the evolution of the visual
results in figure 4.

4 Conclusion
With this experiment we have shown that the cost of DNA syn-
thesis can be controlled by compressing the input image to a
given rate without causing significant visual distortion. Fur-
thermore we have proven that the sequencing cost can be highly
reduced as one can achieve a perfect reconstruction using a
very small percentage of the sequenced data that has been used
in our latest experiment. This fact is very important as we hope
that lowering the expenses of such experiments will make the
DNA data storage more popular to the public making a great
step through in the field of data storage.
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