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Résumé – Dans les algorithmes de structures à partir du mouvement (SfM), la performance de la reconstruction des surfaces dépend fortement
de la qualité de la détermination des points homologues entre images. Les méthodes SfM de référence sont souvent inopérantes pour les scènes
avec peu de structures et textures faiblement contrastées car elles reposent uniquement sur l’appariement de caractéristiques. Cette contribution
présente une solution associant un flot optique dense à la mise en correspondance de caractéristiques. La précision et la robustesse de la recons-
truction ont été validées via des résultats obtenus pour un fantôme avec des dimensions connues et avec des données patient en cystoscopie et en
gastroscopie, respectivement. Plus généralement, cette approche a un fort potentiel pour toute scènes peu constrastée, médicales ou non.

Abstract – In structure from motion (SfM) algorithms, the surface reconstruction performance strongly depends on the quality of the determi-
nation of homologous points between images. Classical feature matching-based methods as integrated in the state-of the-art SfM-algorithms are
often inoperative for scenes including weak structures and textures (e.g., as those in medical endoscopic videos). This contribution introduces
an effective solution based on the combination of dense optical flow and feature matching. The accuracy and robustness of the proposed method
were validated using results obtained for a phantom with known dimensions and with patient data, respectively. Apart from the high performance
obtained for cystoscopy and gastroscopy, the proposed solution has a high potential in other medical and non-medical scenes.

1 Introduction
Endoscopy plays a key role in lesion diagnosis, patient follow-

up and minimally invasive surgery. However, the lack of exten-
ded and textured 3D surfaces is an obstacle to an easy visual
interpretation of the scene, whereas the very limited 2D field of
view (FoV) does not allow for a diagnosis made from lesions
seen entirely.

First attempts to reconstruct 3D FoV extented endoscopic
surfaces were based on structured light approaches [1]. Ho-
wever, these approaches led to hardware changes considered
as being too significant by endoscope manufacturers. Solutions
using only 2D images were proposed by some authors to tackle
the 3D reconstruction problem. In the particular case of cys-
toscopy [2], structure from motion (SfM) methods were used
to reconstruct the internal bladder wall surface. Other methods
combined SfM with shape from shading approaches [3] to ob-
tain surfaces from endoscopic data.

The SfM-based methods make the assumption that the scene
is rigid, and that point correspondences can be established by
detecting and matching feature points. Feature points are loca-
ted with sub-pixel accuracy, while their feature descriptors can
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FIGURE 1 – Too few
SIFT matches [5]
making SfM inappli-
cable in gastroscopy.

be invariant to scale, rotation and intensity changes. Homolo-
gous image points are classically obtained by matching feature
points using their descriptor vectors, and by rejecting outliers
with a RANSAC method [4] taking a homography as trans-
formation model between image pairs. However, numerous en-
doscopic scenes often consist of surfaces with small (tissue)
deformations and the images, affected by strong illumination
changes, only include weak structures or textures. As shown
for instance in Fig. 1 for gastroscopy, feature based matching
approaches lead to too few correspondences when the epithelial
wall of the stomach includes poor structure and texture infor-
mation.

In the case of scenes affected by strong illumination changes
and with few information as in Fig. 1, variational optical flow
(OF) using illumination-invariant descriptors [6,7] can favoura-
bly replace feature based methods. OF methods have an advan-
tage to provide dense point-to-point correspondences between
two overlapping images. The authors in [8] integrated an OF
step in their SfM approach.



This contribution combines dense OF (DOF) and feature mat-
ching to take advantage of both methods : on the one hand,
OF is able to give a dense correspondance even in complex
scene conditions and, on the other hand, the accuracy of fea-
ture points is exploited whenever possible.

This paper is organized as follows. Section 2 gives an over-
view of a novel 3D reconstruction pipeline in which the SfM
algorithm is only one step. The algorithm for the determination
of groups of homologous points in the SfM step is the major
contribution of this paper and is detailed in Section 3. Section 4
successively illustrates the accuracy and the robustness of the
proposed method using 3D surfaces with known dimensions
and (endoscopic) patient data, respectively. Finally, a conclu-
sion is given in Section 5.

2 3D reconstruction pipeline
The proposed surface reconstruction algorithm consists of

four steps.
Preprocessing : In this step, a set of frames is selected from

the input video. Although in this preliminar work the images
are manually selected, they could also be automatically chosen
according the amount of segmented specular reflection [9] and
the measurement of motion blur. The images are also undistor-
ted using the algorithm in [10]. The output of this step is set
S = {I1, I2, . . . , IN} of N temporally ordered images with a
size of H ×W pixels.

Structure from Motion : This step provides a sparse 3D
point cloud close to the surface to be reconstructed, as well
as the camera poses (i.e., their position and orientation) of the
images in set S. These results can only be obtained using groups
of homologous 2D points (homologous 2D points are those is-
suing from the projection of a same 3D point on the images
of different viewpoints). Obtaining groups with numerous and
accurate points is crucial in SfM. These point groups, together
with a classical triangulation algorithm, are used for an initial
estimation of the 3D point positions and camera poses which
are refined with a bundle adjustment technique [11]. This step
ends with a dense point cloud computation algorithm [12] which
performs a completion of the surface initially represented by
the sparse SfM point cloud.

Mesh generation : The algorithm described in [13] is used
to build a meshed surface of triangular facets using the dense
point cloud provided by previous step.

Surface texturing : The algorithm described in [14] is used
to superimpose the image textures onto the meshed surface.

Next section details the proposed joint integration of DOF
and feature matching into the SfM step.

3 Determination of point groups
A point group is defined from at least three images Ii, Ij , Ik

taken all from different viewpoints and with 1 ≤ i, j, k ≤ N .
If
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FIGURE 2 – Rectan-
gular overlap of Ij
with Irefi and vec-
tor vi,j between their
centres.

images pairs (Ii, Ij) and (Ij , Ik) respectively, then pa1

i ,p
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j ,p
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belong to a group a with a minimal length of three points.
The main idea of proposed method is to search scene re-

gions seen in as numerous images as possible and to use the
DOF and/or feature matching methods to determine the ho-
mologous points between image pairs. SfM is accurate when
the 3D points are reconstructed from numerous viewpoints. In
scene regions with a large number of image overlaps, the point
groups have the highest probability to be large. Since in these
common scene regions the corresponding images have not to
be registered (homologous points have only to be determined),
a simple rectangle can be used to delineate the common parts of
image pairs geometrically linked by a translation vector (vector
vi,i+1 in Fig. 2). Next sections detail the proposed three step
algorithm.

Step 1 : Determination of image translations. Two matching
methods are used to find the translation vectors vi,i+1 between
two consecutive images Ii, Ii+1 of a sequence. Since feature-
based methods have the highest accuracy, it is first checked if
the SIFT algorithm can be used to find the translation between
Ii and Ii+1. When this attempt with SIFT fails, a DOF method
[6] is used to determine vi,i+1 in a robust way.

Let Ki (i ∈ [1, . . . , N ]) be the set of |Ki| feature points
detected in Ii by the SIFT algorithm [5]. The feature points of
sets Ki and Ki+1 are matched using their descriptor vectors,
and by rejecting outliers with the RANSAC method [4] taking
a homography as transformation model between images Ii and
Ii+1. Set M i,i+1 corresponds to the set of

∣∣M i,i+1
∣∣ point pairs

which were successfully matched.
The feature-based matching is considered as valid under two

conditions : (i) the number of detected features must be above a
threshold α for images Ii, Ii+1 (i.e., |Ki| and |Ki+1| > α) and
(ii) the number of matches

∣∣M i,i+1
∣∣ must be larger than thre-

shold β. If these two conditions are fulfilled, the components
(v1i,i+1, v

2
i,i+1) of vector vi,i+1 take the value of the transla-

tion parameters located in the last column of the homography
matrix taken as model in RANSAC. The DOF from Ii to Ii+1

is computed when at least one of the two previous conditions
is not fulfilled. This vector field between consecutive images
(denoted by Fi,i+1) is computed with a robust variational me-
thod [6] developed for scenes with few textures and affected
by strong illumination changes. The central vector of flow field
Fi,i+1 of Ii is taken as translation vi,i+1.

The translation vectors between two non-consecutive images
Ii and Ij (with j > i+ 1) are defined by the sum of the vectors
between the consecutive images from i to j :

vi,j(v
1
i,j , v

2
i,j) =

j−1∑
t=i

vt,t+1(v1t,t+1, v
2
t,t+1). (1)



Step 2 : Determination of reference images favouring large
point groups. As sketched in Fig. 2, images Ii and Ij are called
τ -overlapped if and only if :

Areai,j = (W − |v1i,j |)(H − |v2i,j |) ≥ τ
−W < v1i,j < W
−H < v2i,j < H,

(2)

whereW×H is the image size,Areai,j is the overlap area and
τ > 0 is a threshold parameter.

Reference images Irefi share common scene regions with nu-
merous other images. Hence, images Irefi are images Ii that
fulfill two conditions : a reference image must be τ -overlapped
with as much as possible of other images and two reference
images cannot be τ -overlapped (i.e. they do not satisfy equa-
tion (2)). For each image Ii (i = 1, 2, . . . , N ), Si is the set of
|Si| images which are τ -overlapped with Ii. Let Ωref (Ωref ⊂
S) be the set of reference images Irefi to be selected. The de-
termination of set Ωref is detailed in Algorithm 1.

Algorithm 1 Determination of Reference Images
Input: set S of N consecutive images I1, I2, . . . , IN , area

threshold τ , and vectors v1,2,v2,3, . . . ,vN−1,N .
Initiation : Ωref = ∅, G = {S1, S2, . . . , SN}.
While G 6= ∅
– Ωref ← Ωref ∪ Ik, where k satisfies |Sk| ≥ |Si|, for all
Si 6=k ∈ G.

– For all images Ij ∈ Sk, removing corresponding set Sj

from G : G← G \
⋃

j:Ij∈Sk

Sj . (3)
End

Output: Set Ωref of the reference images Irefi .

Step 3 : Point group determination. Point groups are com-
puted for each reference image Irefi by determining the homo-
logous points for all pairs (Irefi , Ij), with Ij ∈ Si. According
to the SIFT algorithm efficiency defined in step 1, one among
three methods is used to optimize the accuracy and robustness
of the homologous point determination between Irefi and Ij :

- If enough SIFT points are detected in both images (|Ki|
and |Kj | > α) and successfully matched (

∣∣M i,j
∣∣ > β), then

the homologous points are computed with SIFT and RANSAC.
- If enough SIFT points are detected in the reference Irefi ,

but not enough SIFT points were found in Ij (|Kj | ≤ α) or the
matching failed (

∣∣M i,j
∣∣ ≤ β), when for each point pi,ref

a ∈
Ki, the point pj

a ∈ Ij defined by pj
a = pi,ref

a + Fi,j

(
pi,ref
a

)
,

is the homomologous of pi,ref
a if it is preserved by specular

reflections and occlusions in Ij .
- If not enough SIFT points can be found in Irefi , the homo-

logous point search is completely based on the flow field Fi,j

from Irefi to Ij . A grid Cref
i of 2D points in Irefi is created,

h× h being the square cell grid size :

Cref
i = {pi,ref

xy (xh, yh) | x, y ∈ N, x ≤ W

h
, y ≤ H

h
}. (4)

Each pj
xy ∈ Ij , defined by pj

xy = pi,ref
xy + Fi,j

(
pi,ref
xy

)
, is a

homologous point of pi,ref
xy in Irefi .

4 Experimental Results
Experimental results are given for both phantom and real en-

doscopic data. For all results, the grid size in equation (4) is
h× h = 10× 10, while the SIFT point detection and matching
thresholds are α = 100 and β = 50, respectively. τ in equa-
tion (2) is set to 2

3WH . The results of the proposed method are
compared with those of the COLMAP software [15] which is
a state-of-the-art solution for multi-view 3D reconstruction ba-
sed on SfM. COLMAP uses SIFT features to find homologous
point groups.

FIGURE 3 – Phantom tests. (a) Four small FoV images. (b)
Reconstructed surface under the viewpoint of the snapshot in
(c). (c) Snapshot of the phantom (top view).

4.1 Objective evaluation based on ground truths
An objective evaluation is impossible on endoscopic data

since for patients no ground truth is available. The phantom
in Fig. 3 consists of a cylinder with known diameter (D =
191.8 mm) and that carries an orange sphere those diameter
(d = 40.1 mm). Cystoscopic images were printed on a paper
sheet that was glued onto the cylinder surface. A camera and
an objective with a 12 mm focal length were used to acquire
a sequence of 293 images (with a size of 780 × 580 pixels) of
the phantom. Four of these small FoV images acquired from
different viewpoints are shown in Fig. 3(a). As in medical en-
doscopy, where the acquisitions are done close to the tissue,
each image only visualise a small internal object region.

For both SfM methods, the dense point cloud is used, toge-
ther with a fitting technique, to obtain the cylinder and sphere
equations. The maximum allowable distance from a 3D inlier
point to the cylinder and to the sphere is set to 1 mm. An ob-
jective evaluation of the dense 3D point clouds accuracy is pos-
sible by comparing the diameter ratio D/d of the reconstruc-
ted surfaces with the ground truth D/d = 4.78. This ratio is
constant even if the two SfM algorithms reconstruct surfaces
at an unknown scale. The diameter ratios obtained with the
COLMAP software and with the proposed method are 4.72
(98.76%) and 4.87 (98.29%), respectively (a percentage cor-
responds to the absolute value of the difference between the
ground truth and the computed ratio divided by the ground



FIGURE 4 – Internal stomach surface under two viewpoints.

truth ratio). These results highlight the accuracy of the pro-
posed method since its performances are the same to those of
COLMAP which has a high precision in presence of contrasted
textures. Both reconstruction methods are really close to the
ground truth.

4.2 Subjective evaluation on patient data
The surface in Fig. 4 was reconstructed using 39 images

from a gastroscopic video of the stomach. The shape of the py-
loric antrum region is very realistic and was recovered mainly
due to OF matches. COLMAP failed completely in the recons-
truction of this surface since only few SIFT points can be mat-
ched in these images (see Fig 1).

A cystoscopic video-sequence of 2468 images was used to
reconstruct a large part of the internal bladder wall surface (see
two images of the sequence in Fig. 5(a)). The 3D surface in
Fig. 5(b) was constructed with homologous points given by
DOF fields for images with few textures (top image in Fig. 5(a))
and by SIFT matches (bottom image in Fig. 5(a)). It allows for a
second diagnosis (after the endoscopy) by zooming on regions
of interest (polyp in Fig. 5(c)) of the archived map.

5 Conclusion
This paper gives an overview on a robust SfM-based pipe-

line. The main contribution lies in the integration of a joint
DOF and feature matching in the SfM step for generating large
2D point groups using Algorithm 1, even in complex scenes.
Although results were only shown in endoscopy, the proposed
solution can be used for scenes with few textures and strong
illumination changes.

FIGURE 5 – Bladder reconstruction. (a) Two small FoV images.
(b) Extended internal surface. (c) Zoom on a polyp.
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