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Résunmé —Le concept de la radio intelligentefinit deux types d'utilisateurs: les utilisateurs primaires (UP) qui onési@tix ressources
spectrales d'une fagon prioritaire et les utilisateurs secondairesquSxploitent les opporturés de communication laises vacantes par
les UPs. Dans ce papier on sénésse au probime de @étection des ressources spectrales libres en utilisant les distributionsrdwende
conditionnement (NDC) de la matrice de covariance des signaux pegudJS. Une nouvelle formule magimatique est propés pour la
distribution du NDC dans le cas d’absence des UPs permettant aingveéopper un nouveau algorithme detettion. Les &sultats des
simulations nous permettent de valider la formulaticgotfique et les hypo#ses de bases.

Abstract — Spectrum sensing is the key enabler for dynamic spectrum accessaasal@v secondary users to reuse®’ spectrum with-

out causing harmful interference to primary users. In this papegiwethe exact distribution of standard condition number (SCN) of dual
central uncorrelated Wishart matrices. This allows us to derive aecai@sed-form expressions of the detection and false alarm probabilities.
Simulation results are presented to validate the accuracy of the derigezssions.

1 Introduction EBD includes the largest eigenvalue (LE) detector propased
[5], the scaled largest eigenvalue (SLE) detector [6], dmed t

One of the most promising solutions for the spectrum scarstandard condition number (SCN) detector [5, 4, 7, 8, 9, 10].
city and the inefficiency in its usage is cognitive radio (CiR) The standard condition number is defined as the ratio of
vented by Mitola [1]. Spectrum sensing is a critical compane Maximum to' minimum glgenvalues. The SCN algorlthms rel){
of CR as it is a fundamental requirement for the secondany us@n asymptotic assumptions that may not be practical. The mai
(SU) to continuously senses the channel before accessing it imitation of this work, including Marchenko-Pastur (MW
avoid causing interference to the primary user (PU). used in [4], the Tracy-Widom (TW) distribution used in [5], or

Several detection techniques were explored by researchdft® usage of Curtiss formula with TW-distribution in [7, &,
in the last decade [2]. Among these, Energy detector (ED) i€ asymptotic assumptions on the covariance matrix size, |
the most popular technique because of the fact that it islsimp the number of samples and the number of antennas must tends
non-coherent, and need no prior knowledge about the PU’s Jo infinity. In addition to this limitation, the analyticabfmulas
gnal. However, ED requires perfect knowledge of the noiséue to TW-distribution could not be_implemented online and
power which reveals the high performance degradation unddpokup tables (LUT) should be used instead. o
noise uncertainty conditions [3]. Other techniques, sisahat- More recently, exact results on the SCN distribution of &nit
ched filter, cyclostationary detection, filter bank, waveletec- ~ Sizeéd Wishart matrices have been found in [11] and applied in
tion and covariance detection methods were also propoged [£R [9, 10]. Trze covariance matrix is known as Wishart matrix

Eigenvalue based detector (EBD) has been recently propd-the receivers inputs are assumed Gaussian. The contplexi
sed as an efficient way for spectrum sensing in CR [4, 5, 6‘]’f SCN distribution, derived in [11], quickly increases ast
for the fact that it does not need any prior knowledge abait th?'umber of samples and/or the number of antennas increase. In
noise power or signal to noise ratio. Due to this blindness pr @ddition, itis very important to have an inverse form of tlE\s
perty, this technique has been shown to overcome the waditi distribution which is difficult using expressions from [11]
nal energy detector technique [5]. EBD is based on the eigen- In_thls paper, we _conS|derth§ dual case (i.e. two antenna CR
values of the received signal’'s covariance matrix andzgtite- ~ '€ceiver) and we give a new simple and accurate form for the
sults from random matrix theory. It detect the presencefatss SCN cumulative distribution function (CDF) and probabilit
of the PU by exploiting receiver diversity that may consist o densny. function (PDF) of the SCN of dual Wishart matrices.
cooperation between SUs, multiple antennas, or oversagipli Accordingly, we provide the exact form of the false-alarra-pr



bability and the decision threshold. These probabilities depend on the threshe)dging used.
The rest of this paper is organized as follows. In section 2However, if the expression of the;, and P; are previously
we give the cognitive radio system model. In section 3, th8lSC known, then a threshold could be set according to a required
metric is analysed and the detection algorithm is providé@.  error constraints. Then, it is clear that these probabditie-
new analytical forms of the CDF and PDF of the SCN metricpend on the distribution of the SCN metric. If we denote the
as well as the form of the false-alarm probability and decisi CDF and PDF of SCN, respectively, b;(.) and f;(.) with
threshold are also derived. Simulation results are pravide index: € {0, 1} indicates the considered hypothesis. Then we
section 4 and the paper conclusion in section 5. can write :

Ppo =1 — Fy(t) 7
2 System Model Py =1-F(t) ®)

Let us consider a multiple-antenna CR system aiming to de- Accordingly, for a prescribed false-alarm probabilfgy, *,
tect the presence/absence of a single PU during a sensing ptre SCN detector algorithm could be described as follows :
iod corresponds t&v samples and denote ly the number of 1. Compute the Covariance matWk = Y'Y .
antennas at the CR receiver. For this detection probleme the 2. Compute the minimum and maximum eigenvalugs £ )
are two hypothesizes?{, corresponds to the absence of the of W.
PU (i.e. free spectrum) ; arld; where the PU exists (i.e. spec- 3. Evaluate the SCN valu§CN = A1 /\k).
trum being used). The received vector, at instaninder both 4. AcceptH, if and only if SCN < Fo‘l(l — Pypy).
hypothesizes is given by : Thus, it is important to have a simple and accurate form of the
SCN distribution for the algorithm to work in real time syste

Ho = y(n) =n(n), 1)
Hq: y(n) = h(n)s(n) +n(n), (2) s .
1: () (n)s(n) +n(n) 3.1 SCN distribution under H,
wherey(n) = [yi(n),--- ,yx(n)]T is the observeds x 1 _ o _
complex samples from all antennas at instanj(n) is aK x 1 Under Ho, the input of the matrixy” is a complex circu-

complex circular white Gaussian noige(n) is aK x 1 com- lar white Gaussian noise with zero mean and unknown va-

plex vector that represents the channels’ coefficient betwe fiances;, thenW is well known as a central uncorrelated com-
the PU and each antenna at the CR receiversgniistands for ~ plex Wishart matrix and is denoted By ~ CWk (N, o71k)

the primary signal to be detected. whereK is the size of the matrix}V is the number of degrees

After collecting N samples from each antenna, the received®f freedom (DoF), and; I is the correlation matrix. In this
signal matrixY” is written as (3). case, the exact generic form of the SCN distributidh(t),
could be found in [11] and folX = 2 and K = 3 in [9, 10]

nd) w2 ) respectively. However, this formula has a complex expoessi

y — v(l) 12(2) - p2(N) 3) and finding the inverse functiaf}, * can be very difficult to do.

: : ; In this section, we propose new mathematical expressions of

(1) yx(2) - yx(N) the probability density function and the cumulative disition

function of the SCN under null hypothests,. Consequently,
expressions of the’ fa and the threshold,,; are provided.

As defined in (4), the standard condition number of dual ma-
trices can be expressed as following :

Without loss of generality, we suppose that< N and we
define the received sample covariance matri¥ds= YY'T,
where." define the Hermitian conjugate.

: A 1 1—-4D/T?
3 SCN-based Algorithm SON =21 =~V / ©)
X 1-\/1-4D/T?
Letus denote b\, > Ay > --- > Ax > O the eigenvalues i ye denote the elements of the mati by w; ; with i, j =
of W then the SCN metric is given by : 1,2, thenT = w; 1 4 wy 5 is the trace of the matri#¥ which
SON — ﬁ @ is also the sum of the eigenvalues, dnd= wy,; * wa 2 — w3 5

is the determinant of the matrB% which is also the product of

Denoting byt the decision threshold, then the detection pro-the eigenvalues. .Be.cause our sample 8izis greater than 30
[12], the central limit theorem allows us to state that; and

bability (P;), defined as the probability of correctly detectin e ; S
Y (Fa) P Y Y g’lUQ’Q converge in distribution to Gaussian distributions. Mereo

the presence of PU, and the false alarm probability,}, defi- h g iabl h | q
ned as the probability of detecting the presence of PU while V" the random ;/ana Gy * “’,22) as a normal product
does not exist, are, respectively, given by (5) and (6). distribution andwy , obeys to Chi-Square distribution. Using
T ’ variable substitution method and mathematical maniparati
P; = P(SCN > t/H1) (5)

Po = P(SCN > t/H,) (6)

1. For a prescribed detection probability, one can congltiesame algo-
rithm #, hypothesis and SCN distribution undin



the random variable/ = 1 — 4D/T? has a beta distribution 10
with parameterse = 1 andg = N/2. Finally, the probability
density of standard condition number (SC%{-—%) is given by

o
©

4
©

228
(1+t)2(atB)-1
wheret € R andt > 1. Then, the cumulative distribution
function of the random variable SCN is given as

92648
FtH)=1—- —— 11

Now, given equations (11) and (7), the false-alarm proiigbil
can be expressed as :

o
3

fo(t) = ptP=1(t — 1)%>! (10)

o
o
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The receiver optimization criterion is thus to maximize tlee

tection probability at a fixed false alarm probability (Nesma
Pearson criterion). Therefore, the optimal thresholdvsmgby

Py, = (12)

FIGURE 1 — Standard condition number CDF o & 2 uncor-
related central dual Wishart matrices

X-axis and probability of detection on Y-axis. We compare th

B 1 performance of the proposed scheme with that of ideal energy
topt = 2(Pra) 717 {1 tyl- (Pf“)(l/ﬁ)} -1 a9 detection algorithm and also the practical energy detediere
ere are some noise uncertainty. The noise uncertaintgsnak
e energy detector very unreliable where good estimation o
the noise power level is not available. Moreover, The predos
algorithm shows significant robustness to the noise uniogyta

If the standard condition number of the received covariancg:'I
matrix W' is greater tham,,, the channel will be busy ; other-
wise channel will be idle.

C problem.
3.2 SCN distribution under H;
Under#,, the exact generic form dfy (¢) is derived in [11], r s sl
however, any further numerical evaluation requires Nu1@al O e hreeass Ao f
function which could be replaced by Marcum Q-function and 08| T WeAED iy coisis
a finite weighted sum Bessel functions [13] or by using hyper- 07}

geometric functions that could be expanded to an infinite sum
(See, for example, [14] foK = 2 and N = 2). Thus, and
since both solutions are difficult to manipulate, a thirdusioh

is to use the non-central/central approximation that agpro
mates the distribution of the non-central uncorrelatedhéfis

by the distribution of the central semi-correlated Wish@te
exact general form of the distribution of SCN of central semi

Detection proba.
o
o

correlated Wishart matrix is provided by [11], and used to ap 25 20 -15 10 s 0

SNR (in dB)

proximateF; (t) for K = 2in [11, 9].

4 simulation FIGURE 2 — Detection probability as function of the SNR for a
fixed false alarm Py, = 0.1), K = 2, andN = 256, compari-
In this section, the theoretical results presented in 8ecti son between ideal energy detector, energy detector unésr no
3.1 are validated via Monte-Carlo simulations. The simatat uncertainty, and proposed algorithm.
results are obtained by generatit@ random samples of the
random matrixY” € R¥" according to (3), wherdd = 2.
Figure 1 validates the new proposed expression for the cumu- )
lative distribution function of the SCN of uncorrelated teh 5 Conclusion
dual Wishart matrices with arbitrary degreds It is clearly
that the analytical curves yield an excellent match with\ttae- In this paper, we have presented a new expression of the cu-
lab simulator output. mulative distribution function of the standard conditiammber
Figure 2 shows the performance of the proposed algorithrof uncorrelated central dual Wishart matrices. A new desact
for a given probability of false alarm, signal-to-noiseidain  algorithm based on this new formula is proposed. We derived



accurate expressions of the false alarm probability andphe [11] M. Matthaiou, M. McKay, P. Smith, and J. Nossek, “On

timal threshold. We have shown that the simulation resuats v the condition number distribution of complex wishart ma-
lidate the accuracy of the derived expressions. trices,” IEEE Trans. Communvol. 58, pp. 1705-1717,
June 2010.

[12] W. StewartProbability, Markov Chains, Queues, and Si-
mulation : The Mathematical Basis of Performance Mo-
deling Princeton University Press, Princeton, 2009.
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