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Abstract – In this paper we present a procedure to retrieve the hemodynamic response function (HRF) from resting 

state functional magnetic resonance imaging (fMRI) data. The fundamentals of the procedures are further validated 

by considering simultaneous electroencephalographic (EEG) recordings. The typical HRF shape at rest for a group 

of healthy subject is presented. Then we present the modifications to the shape of the HRF at rest following two 

physiological modulations: eyes open versus eyes closed and propofol-induced modulations of consciousness.  

 

1 Introduction 

Functional magnetic resonance imaging (fMRI) 

time series can be modeled as a convolution of a 

latent neural signal (which is not measured) and the 

hemodynamic response function (HRF). First, since 

the temporal characteristics of the HRF across 

different anatomical regions can be influenced by 

the underlying venous structure, it is possible that 

intrinsic activity across disparate brain regions can 

be temporally correlated only due to the underlying 

vascular architecture. Second, the hemodynamic 

response is affected by physiological fluctuations 

arising from cardiac pulsation and respiration 

(Cordes, et al., 2001). These can introduce 

temporal correlations into resting state (RS) fMRI 

signals. Also, given the fact that RS-fMRI data is 

sampled slowly (typically every 1-2 seconds), 

physiological fluctuations cannot be removed by 

simple filtering as they can alias into the low 

frequency band of interest (0.01-0.1 Hz). Third, the 

period of the fastest variation in RS-fMRI data is 

10 s, which is orders of magnitude greater than the 

sub-second time scale at which most neuronal 

processes occur. 

This confounding effect can be dealt with by 

deconvolution of the HRF. In task-related fMRI 

this procedure has been known and applied since 

the very beginnings, since the onset of the HRF 

was known. This is not the case for RS-fMRI. 

Motivated by this evidence, we developed an 

approach to perform blind hemodynamic 

deconvolution (Wu, et al., 2013) of RS-fMRI data 

to recover the underlying latent neuronal signals. 

This allowed to greatly improve the estimation of 

directed dynamical influences in RS-fMRI 

recordings (Wu, et al. 2013), but also provided us 

with the estimation of the HRF shape for each 

voxel in the brain. In this paper we will first 

explore the coupling between electrically measured 

brain activity and HRF using simultaneous 

electroencephalographic (EEG) recordings, then we 

analyzed the effects of physiological conditions 

(eyes open vs eyes closed and modulations of 

consciousness) on the HRF shape. 

2 Methodology 

The deconvolution is blind because there is no 

external input in case of RS-fMRI data and 

consequently, both the HRF and the underlying 

neuronal latent variables must be simultaneously 

estimated from the observed fMRI data, making 

this an ill-posed estimation problem.  

The blind hemodynamic deconvolution of resting 

state data was performed using the approach 

proposed by Wu et al (Wu, et al., 2013). 

Specifically, neural events were detected in the 

resting BOLD signal as point processes 

corresponding to signal fluctuations with a given 

signature (Tagliazucchi, Balenzuela, Fraiman, & 

Chialvo, 2012), specifically individuated when the 

standardized BOLD signal crossed a given 

threshold. These pseudo-events were then aligned 

in order to evaluate the exact delay between a 

pseudo-event at cortical level and the BOLD 

signature. This procedure allowed to extract voxel 

specific HRF and perform Wiener deconvolution of 

the BOLD signal (Glover, 1999). The HRF can be 

reconstructed in three ways: the canonical shape 

(with time and space derivatives), as a Finite 

Impulse Response (FIR) or considering the 

averaged portions of the BOLD signal that cross a 

threshold, called rbeta after (Tagliazucchi et al. 

2012). 

The procedure described above is sketched in 

figure 1.  



Figure 2 reports the typical HRF parameters 

(Height, Time to Peak and Full Width at Half 

Maximum) for a pool of 32 healthy subjects, as 

described in (Wu et al. 2013). It is worth to note 

how the variations in HRF are consistent with the 

differences in net arterial and venous flow, and the 

consequent effects on the estimation of Granger 

causality reported in (Webb et al, 2013). This 

confirms the importance of performing HRF 

deconvolution prior to estimating lag-based 

directed connectivity. 

 

 

 
 

 

 

 

3 Applications 

3.1 Relation with EEG power 

In order to further investigate the electrophysiological 

basis of the HRF and its coupling to electrical brain 

activity we considered simultaneously recorded EEG 

and fMRI data. EEG were collected at 1000 Hz and 

downsampled at 250 Hz. Scanner artifact correction, 

pulse artifact correction, notch filtering and ICA 

analysis were performed on the raw data. fMRI data 

were collected at 7 Tesla, with a repetition time of 1s. 

Resting-state fMRI data preprocessing was carried out 

using both AFNI and SPM8 package. First, the EPI 

volumes were corrected for the temporal difference in 

acquisition among different slices, and then the images 

were realigned to the first volume for head-motion 

correction. The resulting volumes were then despiked 

using AFNI's 3dDespike algorithm to mitigate the 

impact of outliers. Next, the despiked images were 

spatially normalized to the Montreal Neurological 

Institute template then resampled to 3-mm isotropic 

voxels.  

Several parameters were included in a linear 

regression to remove possible spurious variances from 

the data. These were i) six head motion parameters 

obtained in the realigning step, ii)non-neuronal sources 

of noise estimated using the anatomical component 

correction method (aCompCor, the representative 

signals of no interest from white matter (WM) and 

cerebral spinal fluid (CSF) included the top five 

principal components (PCs) from WM and the top five 

from CSF mask; the subject-specific WM and CSF 

masks was segmented from the anatomical image of 

each participant using SPM8's unified segmentation–

normalization procedure) (Behzadi, Restom et al. 2007). 

Then the time series were temporally band-pass filtered 

(0.01-0.08 Hz) and linearly detrended. 

The scalp EEG voltage data from the three occipital 

channels O1,O2, and Oz were selected. 

First, EEG signals for each channel were segmented 

into 500 ms non-overlapping epochs. Second, the EEG 

power spectrum for each single epoch was calculated 

using a nonparametric multitaper approach, and the 

alpha band power was obtained by integrating the power 

spectrum between 8 and 12 Hz. Third, the channel-level 

alpha power time series from each of the three occipital 

channels was averaged to yield the subject-level alpha 

power time series, which was convolved with a 

canonical hemodynamic response function (HRF). The 

HRF-convolved alpha power time series was then 

downsampled to the same sampling frequency as the 

BOLD signal. 

 

To identify brain regions whose BOLD activity co-

varied with EEG alpha power, we examined the 

temporal correlation between HRF-convolved alpha 

power time series and BOLD time series from all voxels 

based on the general linear model (GLM). HRF-

convolved alpha power time series was incorporated as 

a parametric regressor in the GLM, modeling the 

coupling effects between alpha and BOLD . 

The processed BOLD signal at every voxel was 

converted into its z-score, and the resting state HRF was 

retrieved as described above, according to the rbeta 

procedure. 

Two canonical ROIs were chosen from the previous 

GLM analysis (Thalamus and Occipital Lobe) both for 

eye closed and open condition, under individual voxel 

p-value<1e-6, cluster size>50. A positive correlation 

between deconvolved BOLD and EEG filtered in alpha 

band was observed in the thalamus, and a negative one 

in the Occipital Lobe (Figure 3). 

 

 
 

 
The typical HRF shapes derived in these two regions 

in the two conditions are reported in Figure 4. 

           Figure 1 : scheme of the procedure 

Figure 2 : parameters of the HRF retrieved at rest 

           Figure 3 : clusters of significant correlation (red) and 

anticorrelation (blue) between deconvolved BOLD and alpha 

power spectrum 



Interestingly we observe two subfamilies of HRF shapes 

in the thalamus. Their nature and function will need to 

be investigated further.  

    

 

 

3.2 HRF modulations with eyes open an d closed 

In order to study the modulations of HRF shape when 

opening or closing the eyes on a larger sample, we 

considered a data set of 48 healthy controls collected at 

the Beijing Normal University in China with 3 resting 

state fMRI scans of six minutes each. During the first 

scan participants were instructed to rest with their eyes 

closed. The second and third resting state scan were 

randomized between resting with eyes open versus eyes 

closed. In addition this dataset contains a 64-direction 

DTI scan for every participant. Data were preprocessed 

as described above. Using a contrast taking into account 

the three conditions (eyes closed, open, closed again), 

we observed significant differences in the height of the 

HRF in the areas depicted in figure 5. The 

corresponding HRF shape is also reported. 

 

 

 

 

3.3 HRF modulations in induced loss of 

consciousness 

Twenty one healthy right-handed volunteers (age 

range, 18–34 yr; mean age ± SD, 23.4 ± 4.1yrs; 5 males) 

participated in the study. The subjects provided written 

informed consent to participate in the study. None of the 

healthy subjects had a history of head trauma or surgery, 

mental illness, drug addiction, asthma, motion sickness, 

or previous problems during anesthesia. The study was 

approved by the Ethics Committee of the Medical 

School of the University of Liege (University Hospital, 

Liege, Belgium). 

Functional MRI acquisition consisted of resting-state 

fMRI volumes repeated in four clinical states only for 

healthy volunteers: normal wakefulness (W1), mild 

sedation (S1), deep sedation (S2), and recovery of 

consciousness (W2). The temporal order of mild- and 

deep-sedation conditions was randomized. The typical 

scan duration was half an hour in each condition. The 

number of scans per session was matched in each 

subject to obtain a similar number of scans in all four 

clinical states (mean ± SD, 251 ± 77 scans/session).  

Functional images were acquired on a 3 Tesla 

Siemens Allegra scanner (Siemens AG, Munich, 

Germany; Echo Planar Imaging sequence using 32 

slices; repetition time=2460ms, echo time=40ms, field 

of view = 220mm, voxel size=3.45x3.45x3 mm, and 

matrix size=64x64x32). During data acquisition, 

subjects wore earplugs and headphones. The most 

comfortable supine position attainable was sought to 

avoid painful stimulation related to position. The same 

preprocessing procedure described above for the 

simultaneous EEG/fMRI data was applied also to these 

data. 

A two-sample t-test with three covariates (age, 

gender and mean framewise displacement (Power et al., 

2012)) was implemented in SPM8 to map group 

difference between four levels of consciousness and 

coma patients, independently for HRF parameters. 

HRF parameters and the amount of spontaneous 

events for each subject individually were entered into a 

random-effects analysis (one-way ANOVA within 

subjects, with three covariate (age, gender and mean 

displacement) to identify regions which showed 

significant activation differences among four clinical 

states), a linear T contrast was computed, searching for 

a linear relationship between HRF and the level of  

consciousness of the subjects across the four conditions 

( contrast (W1 W2 S1 S2) [1.5 0.5 –1.5 -0.5]). 

Type I error due to multiple comparisons across 

voxels was controlled by false discovery rate method. 

Statistical significance for group analysis was set at 

PFDR<0.05, derived from the Gaussian random field 

theory. 

As reported in figure 6, we observed statistical 

differences in all the three HRF parameters, as well as 

in the number of spontaneous events, mainly in frontal 

areas which are reported to be implicated in 

modulations of consciousness from traditional fMRI 

studies. 

 

Figure 4 : HRF at rest in the occipital cortex (left) and in 

the thalamus (right) for eyes open and closed 

Figure 5 : statistical differences in HRF height with eyes 

closed, open then closed again (left), and typical shapes 

within the cluster (right) 



 

 
 

4 Conclusions and future work 

We have presented a methodology to retrieve the 

hemodynamic response function at from resting state 

functional magnetic resonance imaging data. The results 

are promising since the shape of the retrieved HRF is 

consistent with the literature and supports evidences of 

the vascular flow. Additionally, the functional 

modifications to the HRF shape are consistent with 

evidence previously reported using different 

methodologies. The approach will need further 

validation using electrophysiological and cardiovascular 

data. 
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Figure 6 : statistics on pseudoevents and resting HRF 

parameters with a contrast following the level of consciousness 


