Automatic image analysis : a challenge for Computer Vision
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Résumé — Nous exposons une méthode récente pour trouver des structures géométriques arbitraires dans une image, sans
information ou modeéle a priori. Par un principe de la perception dia & Helmholtz, une structure géométrique est perceptuellement
significative si I’espérance de son nombre d’apparitions dans une image aléatoire est trés petite. Les structures géométriques sont
donc caractérisées comme de grandes déviations par rapport au bruit. Ce principe permet de définir et calculer des structures telles
qu’alignements, bords, groupes dans une image, par une méthode libre de parametres. On définira les structures géométriques
”maximales significatives” et on les comparera avec les mémes structures calculées par des algorithmes plus classiques.

Abstract — We expose a recently introduced method for computing geometric structures in a digital image, without any a
priori information. According to a basic principle of perception due to Helmholtz, an observed geometric structure is perceptually
“meaningful” if its number of occurences would be very small in a random situation: geometric structures are characterized as
large deviations from randomness. This leads us to define and compute alignments, edges, and clusters in an image by a
parameter-free method. Maximal meaningful objects are defined, computed, and the results compared with the ones obtained

by classical algorithms.

1 Helmholtz principle

In statistical methods for image analysis, one of the
main problems is the choice of an adequate prior. For
example, in the Bayesian model [6], given an observation
“obs”, the aim is to find the original “model” by compu-
ting the Maximum A Posteriori (MAP) of

Prob(obs|model) x Prob(model)
Prob(obs) '

The term Prob(obs|model) represents the degradation (su-
perimposition of a gaussian noise for example) and the
term Prob(model) is called the prior. This prior plays the
same role as the regularity term in the variational frame-
work. This prior has to be fixed and it is generally difficult
to find a good prior for a given class of images. It is also
probably impossible to give an all-purpose prior!

In [2], [3] and [7], we have outlined a different statis-
tical approach, based on phenomenological observations
coming from Gestalt theory [5]. According to a percep-
tion principle which seems to go back to Helmholtz, every
large deviation from a “uniform noise” image should be
perceptible, provided this large deviation corresponds to
an a priori fixed list of geometric structures (lines, curves,
closed curves, convex sets, spots, local groups,...). Thus,
there still is an a priori geometric model, but, instead of
being quantitative, this model is merely qualitative. Let
us illustrate how this should work for “grouping” black
dots in a white sheet. Assume we have a white image with
black dots spread out. If some of them form a cluster,
say, in the center of the image, then, in order to decide
whether this cluster indeed is a group of points, we com-

Prob(model|obs) =

pute the expectation of this grouping event happening by
chance if the dots were uniformly distributed in the image.
If this expectation happens to be very low, we decide that
the group in the center is meaningful. Thus, instead of
looking for objects as close as possible to a given prior
model, we consider a “wrong” and naive model, actually
a random uniform distribution, and then define the “ob-
jects” as large deviations from this generic model. One
can find in [1] a very close formulation of computer vision
problems.

We may call this method Minimal A Posteriori Expec-
tation, where the prior for the image is a uniform ran-
dom noise model. Indeed, the groups (geometric struc-
tures, gestalts) are defined as the best counterezamples,
i.e. the least expected. Those counterexamples to the uni-
form noise assumption are taken in a restricted geometric
class. Notice that not all such counterexamples are valid:
the Gestalt theory fixes a list of perceptually relevant geo-
metric structures which are supposedly looked for in the
perception process. The computation of their expectation
in the uniform noise model validates their detection: the
least expected in the uniform noise model, the more per-
ceptually meaningful they will be.

A main claim in favour of the Minimum a Posteriori is
its reduction to a single parameter, the meaningfulness of
a geometric event depending only on the difference bet-
ween the logarithm of the false alarm rate and the lo-
garithm of the image size! We just have to fix this false
alarm rate and the dependance of the outcome is anyway
a log-dependence on this rate, so that the results are very
insensitive to a change.



2 Definitions

2.1 Meaningful groups, or clusters

This first example is the seminal one in Gestalt theory.
Assume we see a set of dots on a white sheet and those
dots happen to present one or several groups, separated
by desert regions. In order to characterize this as an event
with very low probability, we shall make all computa-
tions with the a contrario or background model that the
dots have been uniformly distributed over the white sheet.
This amounts to consider the dots as distributed over the
sheet by a Poisson distribution. We then call A the simply
connected region, with area ¢, containing a given obser-
ved cluster of dots and 1 — ¢ is the normalized area of the
sheet. Assume that we observe k points in A and M — k
outside. Then the ”cluster probability” of observing at
least k points among the M inside A is given by

M
P(k,A) =) Ciyo'1—o)M . (1)
i=k
It is easily checked by large deviations estimates that if %
exceeds significantly o, this probability can become very
small. Now, the event is not a generic event in that we
have fixed a posteriori the domain A. The real a priori
event we can define is ” There is a simply connected do-
main A, with area o, containing at least k points”. Since
the number of such domains A is huge, we see that the
expectation of such an event is by no means small. In the
following, we shall therefore consider a more restrictive set
of domains D with cardinality Np.

Definition: We say that a group of dots is e-meaningful
if NpP(k,A) <e.

In order to define D in a realistic way, we have to sample
the set of simply connected domains by encoding their
boundaries as ”low resolution” Jordan curves. We consi-
der a low resolution grid in the image, which for a sake
of low complexity we take to be hexagonal, with mesh m.
The number of curves with length Im starting from a point
and supported by the grid is bounded from above by 2.
The overall number of low resolution curves with length
Im is bounded by N22!. Thus, we can consider several re-
solutions in logarithmic scale my, ..., mq, each one larger
than 1, the pixel mesh and the larger one m, proportional
to the image size, so that ¢ is actually small. Our set of
domains will be the set of all Jordan curves at all given
resolutions and all with discrete length measured in the
corresponding mesh less than a fixed length L. Thus, the
overall number of possible low resolution curves is simply
N2¢2L. Notice that all numbers here are relatively small
since we shall never allow for a very intrincated cluster.
Thus, L will always be smaller than, say, 20 in practice.
We therefore define a meaningful cluster as a set of points
contained in a low resolution curve defined as above, and
such that N2¢2°P(k,A) < e. The experiment below is
based on this definition. It can also happen that a cluster
is not overcrowded, but only fairly isolated from the other
dots. In such a case, we can find a low resolution curve sur-
rounding the cluster and such that some dilate of the curve

does not contain any point. Accordingly, we can modify
the probability of the event: this cluster contained in A
with area o is surrounded by an empty thick curve C with
area ¢o'. In such a case the definition of e-meaningfulness
for an isolated cluster becomes

M
N2g2 Z Ciotl—o - )M i<e. (2)
i=k

Our first experiment displays such clusters.

Fic. 1: Meaningful isolated cluster, surrounded by an
empty low resoltion curve.

2.2 Meaningful boundaries

Let u be a discrete image, of size N x N. We consider the
level lines at quantized levels Ay, ..., A\x. The quantization
step ¢ is chosen in such a way that level lines make a dense
covering of the image: if e.g. this quantization step ¢ is 1
and the natural image ranges 0 to 256, we get such a dense
covering of the image. A level line can be computed as a
Jordan curve contained in the boundary of a level set with
level A,

x» = {z/u(z) <A} and x* = {z/u(z) > A\}.

Notice that along a level line, the gradient of the image
must be everywhere above zero. Otherwise the level line
contains a critical point of the image and is highly de-
pendent upon the image interpolation method. Thus, we
consider in the following only level lines along which the
gradient is not zero.

Let L be a level line of the image u. We denote by [ its
length counted in independent points. In the following, we
will consider that points at a geodesic distance (along the
curve) larger than 2 are independent (i.e. the contrast at
these points are independent random variables). Let z1,
To,...x; denote the [ considered points of L. For a point
z € L, we will denote by c¢(z) the contrast at z. It is

defined b
e o(z) = |Vul(2), 3)

where Vu is computed by a standard finite difference on
a 2 x 2 neighborhood [2]. For 1 € R, we consider the
event: for all 1 < ¢ < I, ¢(x;) > p, i.e. each point of
L has a contrast larger than u. From now on, all com-
putations are performed in the Helmholtz framework ex-
plained in the introduction: we make all computations as
though the contrast observations at z; were mutually in-
dependent. Since the [ points are independent, the proba-
bility of this event is Prob(c(z1) > p) x Prob(c(z2) > p) x



... x Prob(c(z;) > p) = H(u)!, where H () is the probabi-
lity for a point on any level line to have a contrast larger
than g. An important question here is the choice of H ().
Shall we consider that H(u) is given by an a priori pro-
bability distribution, or is it given by the image itself (i.e.
by the histogram of gradient norm in the image)? In the
case of alignments, we shall take by Helmholtz principle
the orientation at each point of the image to be a random,
uniformly distributed variable on [0, 27]. Here, in the case
of contrast, it does not seem sound at all to consider that
the contrast is uniformly distributed. In the following, we
will consider that H(u) is given by the image itself, which
means that

H(p) = 34z /1Vul(z) > p}. (4)
where M is the number of pixels of the image where Vu #
0. In order to define a meaningful event, we have to com-
pute the expectation of the number of occurrences of this
event in the observed image. Thus, we first define the num-
ber of false alarms.

Definition :[Number of false alarms] Let L be a level line
with length [/, counted in independent points. Let u be the
minimal contrast of the points z1,..., #; of L. The number
of false alarms of this event is defined by

NF(L) = Nu x [H(u)]', (5)

where Ny is the number of level lines in the image. We
call interval of level lines a set of level lines such that each
one is enclosed in only one, and contains only another one.
In such a case, we shall only display in the experiments,
the "maximal meaningful” level line of the interval, i.e.
the one for which NVF is minimal over the interval. This
is can be compared to a global Canny filter.

Notice that the number Nj; of level lines is provided by
the image itself. We now define e-meaningful level lines.

Definition :[e-meaningful boundary] A level line L with
length [ and minimal contrast p is e-meaningful if

NF(L) = Ny x [H(w)]" <e. (6)

See Figure 2, for an example of meaningful and maximal
meaningful boundaries.

2.3 Meaningful alignments

We assume that the accuracy of a measured gradient
direction at a point is equal to pm radians. This means
that a casual alignment of a direction with a prefixed one
happens with probability p. In practice, p = % is the best
we can hope from usually noisy and aliased digital images.
We consider the following event: ”on a discrete segment
of the image, joining two pixel centers, and with length
I counted in points at Nyquist distance, at least k& points
have the same direction as the segment with precision p.”
(The direction at each point is computed as the direction
of the gradient rotated by 7.)

Definition: Consider a segment S of length [ containing
k aligned points. We call number of false alarms of S,

NF($)=N'Y Clp(1-p)' . 7)

i=k
We say that S is e-meaningful if NF(S) <e.

If on a straight line we have found a very meaningful
segment S, then by enlarging slightly or reducing slightly
S, we still find a meaningful segment. This means that
meaningfulness cannot be a univoque criterion for detec-
tion, unless we can point out the ”best meaningful” ex-
planation of what is observed as meaningful. This is done
by the following definition, which can be adapted as well
to meaningful edges [3], meaningful modes in a histogram
[7] and clusters (to appear).

Definition : We say that an e-meaningful geometric struc-
ture A is maximal meaningful if

— it does not contain a strictly more meaningful struc-
ture: VB C A, NF(B) > NF(A).

— it is not contained in a more meaningful structure:
VB D> A, NF(B) > NF(A).

It is proved in [7] that maximal structures cannot over-
lap, which one of the main theoretical outcomes validating
the above definitions. We only display in the experiments
those maximal meaningful alignments (see Figure 3).
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00 00 0 00 FiG. 3: From top to bottom : 1. original image; 2. maximal
meaningful alignments.

F1G. 2: From top to bottom : 1. original image; 2. all mea-
ningful boundaries; 3. mazimal meaningful boundaries.



