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Résumé - Dans cet article nous allons présenter une nouvelle méthode temps-fréquence pour la reduction des terms d'interférence. On
va considérer le cas des signaux multi-composants, pour lequel l'élimination des termes d'interférence est difficile à résoudre. Pour
extraire les composants utiles, nous proposons une technique basée sur le concept de décomposition atomique. Nous définissons  une
structure algorithmique pyramidale, en envisageant deux buts: l'amélioration des performances du processus d'estimation et la réduction
de la complexité. On met en évidence les avantages de cette méthode, en ce qui concerne l'estimation du taux de modulation linéaire et la
complexité.

Abstract - In this paper a new time-frequency interference terms cancellation method will be presented. We will consider this problem
in the multi-structure signal case, where this problem is often difficult to solve due to interference geometry, which can be superposed on
the signal component. We propose a technique based on the atomic decomposition of the signal, in order to extract its components. A
pyramidal algorithm structure is defined, in order to improve the parameter estimation performances and to reduce its complexity. So, we
will show that the method offers some benefits, such as the more exact chirp rate estimation in the noisy environment. Beside the
complexity improvement is obtained.

I. Introduction

The most important interest for time-frequency
representations (TFRs) is the efficient analysis procedure
which can be done in the non-stationary environment. One
primary motivation for these different schemes is to improve
the joint time-frequency resolution with the least amount of
cross-term interferences. Even if the Wigner-Ville
Distribution (WVD) possesses the best time-frequency
resolution, this transform  has the problem of cross-term
interferences, which greatly limits its applications. Naturally,
many adaptive time-frequency schemes have been
developed; one of this approach, introduced by Baraniuk [3],
uses an adaptive gaussian kernel, designed in the ambiguity
plane, which is the best matched on the time-frequency
structure. In this case, a trade-off between the interference
level and the signal component will limit the application of
this approach.

An alternative approach is the adaptive time-
frequency signal representation using a basis function
dictionary, which is well matched on the time-frequency
signal atoms. Actually we use a four parameter dictionary,
which has the chirplet  as the elementary functions. The
chirplet is a generalization of the Gabor logon  by the
introduction of the frequency rate and scale parameters. In
order to obtain this analyzing function two approaches can
be developed.

The first solution is the application of time-shift,
frequency-shift, scaling and chirp multiplication operators
on the gaussian atom; the optimal choice of those parameters
can be done by a likelihood maximization (LM) procedure.
The operation of this method which provides good
performances, supposes the knowledge of the atom number
that composes the signal (research space dimension). The
second solution consists in fractional Fourier transform
(FRFT), which represents a generalization of the classical
Fourier Transform.

This transform provides a measure for the angular
distribution of energy in the time-frequency plane. So, we
can success the rotation in time-frequency plane using the
operator issued from this transform. Consequently, the four-

parameter time-frequency atom will be obtained by the
scaling, rotation, time-shift and frequency-shift operators,
applied to the unit gaussian function.

In this paper we will firstly present the adaptive time-
frequency dictionary construction procedure, using the
FRFT. We will highlight  their chirp rate estimation
capability and a objective comparison will be done. So on,
we propose a new algorithm to design the signal
representation. This approach is based on the pyramidal
algorithm, similar with the wavelet packet decomposition
algorithm. We will use the FRFT to design the filter bank
which will be used for the decomposition and we will make
some considerations over this procedure in order to achieve
an orthogonal transform.

II. The decomposition basis selection
using the FRFT

2.1. FRFT definition and its time-frequency
properties

The fractional Fourier transform is the generalization of
the classical Fourier transform. It provides a measure for the
angular distribution of energy in the time-frequency plane.
The FRFT depends on a parameter α and can be interpreted
as a rotation by an angle α in the time-frequency plane [1].
As shown in figure 1, the FRFT can be interpreted as the
counterclockwise rotation of the signal representation by an
arbitrary angle α.

FIG. 1 :  The fractional Fourier transform definition:
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The FRFT of a signal f(t) is presented as :
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where p = 2π
α  is the order of the FRFT.  The relationship

between the time-frequency origin (in standard time-
frequency plane - α=0) and the fractional ones (in the origin
centered chirp signal case, with α - chirp rate), may be
expressed as follows (see figure 1):
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Main time-frequency properties

The most important FRFT property is the representation
of a chirp signal in the fractional domain. So, a chirp signal
in the standard time-frequency plane will be represented by a
tone. This property allows the possibility of chirp rate and
the start frequency estimation, using the classical spectral
estimation methods designed for sinusoidal signals. In the
next figure we show the chirp parameter estimation
procedure and the corresponding results obtained for a noisy
chirp signal with the following parameters: chirp_rate=-0.2,
start_frequency=0.4,  SNR=-1 dB.  

The procedure consists in the signal FRFT analyzing for
some values of the angle α). We will retain the value which
leads to a single and pronounced maximum; for this value
we will evaluate the start frequency of the modulation. The
temporal signal origin can be deduced from the coordinates
origin taken into account for FRFT evaluation. The signal
length can be estimated using a likelihood ratio
maximization procedure, for example.

This procedure provides good results since the estimated
parameter values are relatively closed for the real ones,
presented above.

FIG. 2 : Chirp parameter estimation using FRFT

2.2. Linear frequency modulation of the
wavelet functions

In [2], Baraniuk has introduced the scale-shear fan bases
concept, defined in the Fourier domain of a wavelet basis
element:
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F stands for the Fourier transform operator and Gwavelet
represents the Fourier transform of gwavelet.

The scale-shear fan bases are constructed simply by
replacing the linear f term in the exponential of (4) with
another power of f:
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Taking the inverse Fourier transform of Bm n
fan
,  yields the

proposed fan basis element of order c:
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The operator Ck
c  represents a convolution with a hyper-

chirp function of order c and chirp rate k, that is
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c
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Equation (6) indicates that the building blocks of a fan
basis are obtained by convolving a fixed function gfan with a
chirp function of rate np0 and then scaling the result. The
chirp convolution causes the basis elements to shear in the
time-frequency plane. Different values of the order
parameter c correspond to different types of chirps and,
hence, produce completely different time-frequency plane
tillings [1]. In this work, we will employ only the linear
chirps. Consequently, the algorithm to obtain the linear
modulated wavelet function consists in the convolution
between a wavelet basis function (at scale l, sub-band n and
shift k) and a chirp function, generated by (8).

• Chirp rate selection

In order to apply this algorithm we need to establish a
procedure to choose the optimal chirp rate, in the sense of
best matching on the signal structure. We propose an
estimation procedure based on the signal sub-space
projection on the FRFT plane.

The main idea involved for this procedure is to
compare the signal sub-space approximation with a reference
chirp (with a positive and negative chirp rate) bounded with
the wavelet packet tilling. The parameters which
characterize these chirp functions are presented in the
following figure.

FIG. 3 :  Reference chirp definition
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Using the notations introduced in figure 3, we can define
the chirp rates of the up- and down- chirps :

In the orthogonal case the signal wavelet packet sub-
space may be computed as follows:
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where (Cl,n,k) is the set of wavelet packet coefficients and the
( )knl ,,ψ  are the corresponding wavelet functions. In order to

approximate the sln by the chirp functions, we will represent
this one in the FRFT plane, according to the considered WP
sub-space. This approximation stage will be done in two
phases.

Firstly, we evaluate the nature of the chirp signal which
may approximate our signal sub-space. This can be done by
the signal FRFT under two directions, corresponding to a
positive chirp rate and a negative chirp rate, respectively.   

Using the wavelet packet coefficients from the best basis
(we suppose as best basis selection procedure the Shannon’s
entropy minimization, [3]) and the corresponding wavelet
functions, we compute the signal wavelet packet subspace
representation. The resulting shape will be transformed in
the fractional coordinates. According to the FRFT property,
the reference chirps will be interpreted, in the corresponding
fractional domain, as a  sinusoid with the frequency given by
(3). After the evaluation of the fractional spectra WV
distribution, we will compute the frequency marginal.
Theoretically, for the reference chirp signal, we must obtain
a Dirac pulse.

FIG. 4 : Chirp estimation principle from WP sub-space, suing
FRFT

Furthermore, in the both FRFT domain, we compute the
WVDs of the 1

ln
cs  and 2

ln
cs . After the fractional frequency

marginal computing, the frequency spreading S1 and S2 will
be evaluated. If the S1<S2 (the signal subspace is more
concentred in the TF domain corresponding to up-chirp) we
can conclude that this subspace may be approximated by a
up-chirp. Otherwise, the situation becomes similar and the
subspace approximation space will be a negative rate chirp.
In figure 4, we have considered a simplicity example when
the subspace TFR has a linear shape.

 Using this procedure, we applied a dichotomy procedure
to reduce a research space to only the positive (or negative)
rate chirps.

 In the second stage we try to estimate the linear
modulation parameters which will be applied to
corresponding wavelet functions. That is, using the
corresponding coefficients of this subspace, we approximate
the subspace fractional frequency marginal with a gaussian
distribution, in order to extract the energetic center
coordinates. In this sense, we use the following procedure:

FIG. 5 :  Fractional frequency marginal approximation by a
Gaussian distribution

Using the fm computed like that we will apply the
procedure described in figure 2: we will turn the fractional
coordinates and we will retain the FRFT orders for which the
time-frequency concentrations become maximal. These
values will be used to linearly modulate the wavelet
functions corresponding to the central points of the Gaussian
distribution. The number of functions that will be modulated
depends on the spread parameter S. For example, if S is
small, we will modulate only the function corresponding to
the central point.

III. Orhotgonal Fractional Pyramidal
Decomposition Algorithm (FPDA)

In many practical applications, the orthogonality is suitable
from different points of view. First, there are some fast
algorithms (such Mallat's pyramidal algorithm), which are
well adapted for practical implementation. Secondly, the
orthogonality of a basis ensures the transform coefficients
decorrelation, which leads to specific applications, like
signal denoising and compression. Beside, the basis
orthogonality guarantees the representation unicity.

Unfortunately, an orthogonal basis is not always able to
extract the signal features. In this section, we intend to use
the algorithm previously presented in order to enhance the
time-frequency image quality, in the orthogonal context.

This algorithm, called FPAD, due to the FRFT involving,
begins by the signal WPD and the best basis selection, using
the Shannon’s entropy as cost function. After that, we will
generate the corresponding signal subspaces. For each of
them, we will apply the FRFT for both possible chirp rate, in
order to evaluate the nature of chirp signal which can
approximate a given subspace. After that, we will effectively
search the optimal chirp rates and the most significant
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wavelet functions which will be used for the signal subspace
approximation. The resulting function will be weighted with
the best basis coefficients and we will compute the WVD of
each retained basis function, having as objective the signal
feature extraction, for the classification task. In order to
highlight the stages of this algorithm, we intend to present
the obtained results (for l=1;n=2 subspace) after each
operation, using as test signal a hyperbolic chirp modulation,
with an ideal TFR illustrated in the figure 6.a.

FIG. 6 :  FPAD for subspace l=1;n=1

In the figure 6.b we present the case of a subspace
extracted from the best basis. This case corresponds to the
first part of  hyperbolic chirp modulation, we apply the
FRFTs for the orders defined in (9), and we compute the
fractional frequency marginal. The spreading values show
that this subspace can be approximated by a negative rate
chirp set. After the estimation phase (where we turn our TF
axes with different angular values, in the negative sense) and
using the most important coefficients (2 and 3) we obtain the
optimal values of the chirp rate which will be used for the
corresponding wavelet function modulation. We observe in
the same figure that the issued TFR is more concentrated
that the original one.

In the next table, we present the corresponding values
obtained for the other best basis subspaces.

TAB. 1 : Chirp rate estimation for WP subspace approximations

Subspace Nature of
approximation

chirps

Chirp rates
estimates

Modulated
wavelet

functions
l=1; n=1 Negative c = -0.82; c = -0.8 ψ 1,1,2 &ψ 1,1,3
l=4; n=3 Negative c = -0.01 ψ 4,3,3
l=4; n=4 Negative c = -0.008 ψ 4,4,14
l=4; n=5 Negative c=-0.43 ψ 4,5,5

In fact, using these chirp rates, we adapt our time-
frequency partition in order to match better the processed
signal. This feature is illustrated in the next figure, where we
picture the phase plane issued from the classical WVD and
from the FPBA-PA.

FIG. 7 :  Phase planes issued by WPD and FPBA-PA

On this figure we observe that the FPAD partition is more
adapted to model our test signal. Furthermore, the obtained
tillings were used to search the optimal shapes which
characterize the signal singularity. This property ensures the
adaptability of the new time-frequency distribution on the
time-frequency signal structure.

In figure 8 we plot the comparative results for the
hyperbolic chirp modulation considered as the test signal.

FIG. 8 : Comparative results for the hyperbolic chirp modulation

IV. Conclusion

Based on the results presented in figure 8, we can conclude
that the FPAD provides a good time-frequency
representation. Furthermore, we have eliminated the specific
drawbacks of the MWVD (regarding the parameter set
choice) or the chirplet transform (regarding the research
space dimension setting).

In the classical WPD case, the use of the Mallat' pyramidal
algorithm and the best basis procedure, based on the
Shannon's entropy, guaranties the orthogonal behavior of
this basis. In the FPBA-PA case, we have used the same
method, but we have separately processed the significant
wavelet function, in order to precisely extract the time-
frequency signal features. For this purpose, we have
modulated these functions using the chirp rates, extracted
from the FRFT domain. In [2], it is shown that, if we use a
orthogonal wavelet base, the modulation operator; described
in the section 2.2., will conserve the orthogonal behavior for
the new basis.
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