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Résumé –Nousétudions lemouvement Brownien fractionnaire en temps multifractal, un modèle de processus multifractal propos´e recemment
dans le cadre de l’´etude de s´eries financi`eres. Notre int´erêt porte sur les propri´etés statistiques des coefficients d’ondelette issus de la d´ecom-
position de ces processus. Parmi ces propri´etés nous nous int´eressons particuli`erement aux corr´elations résiduelles (longue d´ependance), `a la
stationnarité, qui sont les composantes essentielles permettant de caract´eriser les performances statistiques des estimateurs de spectre multifrac-
tal, construits `a partir de transform´ees en ondelettes.

Abstract – We studyfractional Brownian motions in multifractal time, a model for multifractal processes proposed recently in the context of
economics. Our interest focuses on the statistical properties of the wavelet decomposition of these processes, such as residual correlations (LRD)
and stationarity, which are instrumental towards computing the statistics of wavelet-based estimators of the multifractal spectrum.

1 Introduction

Fractional Brownian motion (fBm) has for long served as the
archetype of a process with long range dependence (LRD). At
the same time, positive increment processes such as multiplica-
tive cascades have proven amenable models for processes with
underlying multifractal structures. For both processes, wave-
lets have played a key role in their analysis and synthesis (see
[1, 4, 5, 14] and [2, 7, 10]). Combining these two classes of
processes in the so-calledfractional Brownian motions in mul-
tifractal time (BM(MT)) a novel class of processes was intro-
duced in [9] which are versatile enough to enable modeling of
LRD and multifractal scaling independently (compare [11]).

In this pioneering study, we decompose BM(MT) onto an
orthogonal wavelet basis, and show that under mild conditions
the correlation of wavelet coefficients decay fast (they are even
zero in some cases), despite a strong dependence structure that
underlies the process. It is then straightforward to follow [12]
and compute the statistics of the wavelet-based estimator of the
multifractal spectrum of BM(MT) [2, 7, 11].

2 Background

2.1 Wavelets and local regularity

The discrete (orthogonal) wavelet decomposition of a signal
x is defined as the following inner product [3]:

cj;k = 2�j
Z
 �(2�jt� k)x(t) dt; (j; k) 2 ZZ2 (1)

where is the so-called mother wavelet. Anadmissiblewave-
let must satisfyZ

tr  (t) dt = 0; r = 0; : : : ;R� 1: (2)

The parameterR � 1, is called the cancellation order of and
relates to the regularity of the wavelet.

Processes with local singularities(cusps, ridges, edges, chirps,
etc. . . ) appear in many fields of endeavor [2, 7, 8, 10]. The sin-
gularity behavior of a processx(t) at timet may be characte-
rized by the singularity exponent�(t) defined as the largest�
such that

jdj;kj = O(2j�) ask2j ! t: (3)

It is shown in [5, 6, 7] that this notion�(t) is closely related
to the Hölder regularity ofx at t. Multifractal spectra quantify
(geometrically or statistically) the occurrence of�(t) = � in a
multiplicative processx(t). The multifractal formalism allows
to compute the multifractal spectrum from the power law decay
of the moments of the wavelet coefficients across scale.

2.2 Fractional Brownian motion

Fractional Brownian motion(fBm)BH is the unique process
that :

1. is Gaussian,

2. is statistically self-similar with parameter0 < H < 1, i.e.

BH(�t)
d
= �HBH (t); (4)

3. and has stationary incrementsGH(t) = BH (t+�)�BH (t).



Statistical self-similarity implies that the fBm is itself a non
stationary process. Its covariance function reads as

IEBH (t)BH (s) =
�2

2

�
jtj2H + jsj2H � jt� sj2H

�
: (5)

Note that fBm is a non-stationary process, but that its incre-
ments are stationary. ForH > 1=2, the autocorrelation func-
tion of the increments processGH(t) decays very slowly,

IE[GH(t)GH(t + � )] � �2H�2; � � �

with 2H � 2 > �1 which was termedlong range dependence
(LRD).

Regarding its multifractal properties let us note that fBm
BH (t) has a local H¨older exponent�(t) = H; 8t. In other
words, fBm is amonofractalprocess. Mainly for this reason,
fBm fails to provide sufficient flexibility as a model for many
real world measurements, where one typically sees the local
regularity�(t) changing erratically with time.

2.3 Multifractal cascades

The most well known processes with truly multifractal pro-
perties, i.e. erratically changing�(t), are the random cascades.
TheBinomial cascades, a particular example, is most easily de-
fined using a binary tree structure. Given identically distributed
random variables�ik (k = 0; : : :2�j � 1, i = 0; 1; : : :) define
the random measure� on dyadic intervals by

�([kj2
j; (kj + 1)2j]) = �0k0 � �

1
k1
� � ��jkj : (6)

Here, givenkj we setki�1 = ki div2 (i = 1; : : : ; j). Also, we
assume that�i+12k +�i+12k+1 = 1 (conservation of mass) and that
the�ik are otherwise independent.

Finally, let thecascade processbe defined by

M(t) :=

Z t

0

d�:

Such processesM(t) are well known to be true multifractals.
In addition, they possess a rescaling property similar to fBm:
for 0 � s < t � 1

M(2j(k + t))�M(2j(k + s))
d
= Wj (M(t) �M(s)): (7)

Comparing with (4) note that hereWj is a random variable. Its
distribution depends only on the scalej, e.g. for the Binomial
cascade

Wj
d
= �0k0 � �

1
k1
� � ��jkj : (8)

More elaborate multiplicative cascades which have been dis-
covered recently [13] have additional nice properties such as
distributions of incrementsM(t) �M(s) depending only on
jt � sj and scaling of moments, i.e. givenq there is a number
T (q) such that:

IEjM(t)�M(s)jq = jt� sjT (q): (9)

Note that (9) holds for the Binomial cascades forq = 1 with
T (1) = 1 due to the conservation of mass.

2.4 Multifractional motion

Mono-fractal processeslike fBm are too elementary to serve
as models for multifractal processes. On the other hand, mul-
tiplicative cascades, albeit providing us with rich multifractal

models, may be inappropriate for real world problems due to
their approximately log-normal marginals. In [9, 11] a broad
class ofmultifractal motionsis proposed based onmultifractal
time warping:

B(t) := BH (M(t)): (10)

Such processes has nice statistical as well as rich multifrac-
tal properties as is shown in [11]. For instance, using the cova-
riance structure (5) of the underlying fBm, we find:

IEB(t)B(s) = (11)

IE
�
IE
�
BH (M(t))BH (M(s))

��M(t);M(s)
�	

=

�2

2
IE
�
jM(t)j2H + jM(s)j2H � jM(t)�M(s)j2H

�
:

Note also the special caseH = 1=2whereIE[M(t)�M(s)] =
t� s (compare (9) withq = 1) yields

IEB(t)B(s) = �2min(M(t);M(s))

similar to the case of plain fBm. The increment process at given
lag�, G(k) := B((k+1)�)�B(k�) is then decorrelated, but
nevertheless dependent.

For H > 1=2, B exhibits long range dependence analo-
gously to fBm (compare (5) and (11)).

3 Statistics

3.1 Identical distributions

Assume that the wavelet is compactly supported, say, for
simplicity, that it is zero outside the interval[0; 1]. Assume fur-
thermore thatM satisfies (7). Then, at each scalej, the wavelet
coefficientscj;k are identically distributed according to:

cj;k
d
= (Wj)

H c0;0; (12)

whereWj is the random variable appearing in (7).

Proof.
Noting first that (2�jt � k) is zero outside[k2j; (k + 1)2j],
applying then a change of variable we find

cj;k =

Z 1

0

 (t)BH (M(2j(t+ k))) dt:

Next, we use the admissibility condition
R
 = 0 to get

cj;k =

Z 1

0

 (t)(BH (M(2j(t+ k)))� BH (M(2jk))) dt:

Finally, combining the property (7) of the cascadeM, and the
self-similarity (4) of the fBmBH , we get:

cj;k
d
=

Z 1

0
 (t)BH (WjM(t)) dt

d
= (Wj)

H c0;0:

3.2 Wide sense stationarity

If the multiplicative cascadeM(t) has the property (9) with
q = 2H then, for any admissible wavelet, the residual correla-
tion of wavelet coefficients reads at each scalej:

IEcj;kcj;k0 = (13)

�
�2

2
2�j

Z
 (t)

Z
jsjT (2H) (t + 2�js � (k � k0))ds dt:



This expression depends on the positionsk andk0 only in terms
of their difference. Consequently, within each scalej, the series
of wavelet coefficientscj;k is wide sense stationary.

As a matter of fact, stationarity of increments ofM is suffi-
cient to conclude wide sense stationarity.

Proof.
Exchanging order of expectation and integrals

IEcj;kcj;k0 = 2�2j
Z Z

 j;k(t) j;k0(t0) IEB(t)B(t0) dtdt0:

Using the covariance structure (11) ofB and the admissibility
condition of the wavelet (

R
 j;k = 0), the residual autocorrela-

tion functionIEcj;kcj;k0 simplifies to:

�
�2

2
2�2j

Z Z
 j;k(t) j;k0(t0) IE[jM(t)�M(t0)j]2H dt dt0:

Now, using property (9) withq = 2H, and making obvious
changes of variables, we get the claimed result (13).

3.3 Fast decay of the correlation

As was mentioned above,B exhibits LRD which is unfavo-
rable from a statistical point of view for the direct estimation
of the local regularity via increments. Using instead the wa-
velet decomposition for this task (compare (3)) we may profit
from its decorrelation property – which we are about to esta-
blish now – similarly as was done for the estimation ofH in
the case of fBm [1, 5, 6].

Under conditions suitable to obtain (13) the covariance of
the wavelet coefficients across scale decays as

IEcj;kcj;k0 � O(jk � k0jT (2H)�2R); jk � k0j ! 1: (14)

In words, the wavelet transform is able to remove the LRD
present in the processB meaning thatT (2H) � 2R is smal-
ler than�1 (no LRD) for large enoughR while the correlation
of the increments ofB decay with exponentT (2H)� 2 which
is larger than�1 (LRD).

Proof.
Returning to (13), we first apply the change of variable2�js =
� and identify
 (� ) =

R
 (t) (t + � )dt, the autocorrelation

function of the wavelet . Thus, we obtain

IEcj;kcj;k0 = �
�

2
2jT (2H)

Z
j� jT (2H)
 (� � (k � k0)) d�:

(15)
Next, we apply Parseval’s formula to write this last expression
in the frequency domain as

IEcj;kcj;k0 = �
�2

2
2jT (2H)

Z
j	(�)j2

j�jT (2H)+1
e�i2��(k�k

0)d�; :

(16)
Here,	 denotes the Fourier transform of . In the limit� ! 0
the regularity condition of implies thatj	(�)j2 � j�j2R.
Estimating the discrete Fourier transform in (16) leads finally
to (14).

Let us emphasize the particular case of a Wiener process
(H = 1=2), and the Haar system. First, forq = 2H = 1 (9)
holds withT (q) = T (2H) = 1 even for the Binomial cascade
as mentioned before. The above expression (15) reads

IEcj;kcj;k0 = �
�2

2
2j
Z
j� + (k � k0)j 
 (� ) d�: (17)

Furthermore, for the Haar wavelet
 can be calculated expli-
citly


 (� )

8><
>:

= �3j� j+ 1 0 � j� j < 1=2

= j� j � 1 1=2 � j� j < 1

= 0 j� j � 1;

which allows for a tedious but straightforward calculation lea-
ding to

IEcj;kcj;k0

(
= �2

12 jk � k0j = 0

= 0 jk � k0j 6= 0:

In other words, the wavelet coefficients ofB are then strictly
decorrelated. So, conditioned on knowingM they actually be-
come independent Gaussian variables. Figure 1 shows, using
a Haar system, the wavelet coefficients auto-correlation func-
tion estimated on an experimental data set. The resulting sharp
structure is in perfect agreement with the theory. Based on this
decorrelation the multifractal spectrum ofB has been estimated
in Figure 2.

4 Conclusion

Fractional Brownian motion (fBm) and Binomial cascades
have been instrumental as archetypes of processes with LRD,
respectively monotonous multifractals. Similarly,fBm in mul-
tifractal time is liable to play a key role in the study of os-
cillating multifractal processes (estimation, modeling and syn-
thesis). Here, we proved stationarity and fast decorrelation of
the wavelet decomposition of such signals. Based on these pro-
perties the statistical properties of the wavelet-based estimators
of the multifractal spectrum can now be developed following
along the lines of [12].
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FIG. 1: (a) Increments of one realization of a Binomial cas-
cadeM((k + 1)2j) �M(k2j) = �([k2j; (k + 1)2j]), (k =
0; : : :2�j�1). (b) Realization of a Binomial cascadeM(k2j),
(k = 0; : : :2�j � 1). (c) One realization of ordinary Brow-
nian motion warped with the realization of (b), i.e.B(k2j) =
B1=2(M(k2j)) (k = 0; : : :2�j � 1). (d) Empirical residual
correlation of the wavelet decomposition ofB(t) using a Haar
wavelet. (e) Empirical residual correlation of the wavelet de-
composition ofB(t) using a Daubechies wavelet with regula-
rity 2.
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FIG. 2:Multifractal analysis ofB(t) displayed in figure 1. Dot-
dashed: theoretical multifractal spectrum of the warp timeM
which is displayed in figure 1(b) – dashed: theoretical multi-
fractal spectrum of the processB(t) itself which is displayed in
figure 1(c) – solid: wavelet-based estimate of the multifractal
spectrum ofB(t).
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