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RÉSUMÉ

Bien que l’analyse globale des systèmes nonlinéaires soit beaucoup
utilisée, peu d’essais ont été faits pour tenter de charactériser leur
comportement local, et les succès obtenus furent limités. Ceci pro-
vient principalement de ce que ces tentatives se sont concentrées sur
l’estimation quantitative du comportement, et que les zones d’intérêt
ont été déterminées de manière assez arbitraire. Cet article se propose
de résoudre le problème en présentant une technique estimant l’ex-
posant de Lyapunov local pour tous les points de l’attracteur et les
agglomérant en groupes significatifs. Les exemples basés sur le sys-
tème de Lorenz montrent que, si les résultats sont souvent peu fiables
numériquement, ils permettent une analyse qualitative de l’attracteur,
et les groupes formés ont une signification physique.

ABSTRACT

While the global analysis of nonlinear dynamical systems is of wide
use, it characterizes only the global behavior of a system. Attempts
have been made to estimate local measures, hence local behaviors,
but these have not been very sucessful, mainly because they focused
on a quantitative analysis, and divided the attractor into regions
of interest rather arbitrarily. This paper presents a technique for
computing estimates of the local Lyapunov exponent on each point
of the attractor, then group them into meaningful clusters. Examples
based on the Lorenz system will show that, while the results do not
yield accurate estimates, a qualitative analysis of the attractor remains
possible. Moreover, the clusters obtained can be linked to physical
behaviors.

1 Introduction

Recent works in the literature have shown the interest of
computing local measures on the attractor of chaotic signals.
Global measures, such as attractor dimension or the Lyapunov
spectrum, can indeed indicate global features of the system,
but do not tell about its local behavior. It has however been
shown that local Lyapunov exponents could be very useful to
determine the local predictability of a signal [1, 2].

These works divide the attractor into regions, for which a
center is defined. It is then possible to compute the local Lya-
punov spectrum, using the Jacobian matrix of the system [2].
An alternative way is to compute the local divergence rate,
from which the local largest Lyapunov exponent can be com-
puted [3, 4, 5].

These techniques have not been much used, for two main
reasons : because of the limited amount of points in each re-
gion, the estimate of the local exponent is often inaccurate.
Moreover, the regions of interest are chosen in an arbitrary fa-
shion, and may not correspond to the natural boundaries bet-
ween different value ranges of the local Lyapunov exponents.
Finally, the choice of these regions may hide smaller regions
between which the exponent varies significantly, thus hiding
part of the local behavior.

This paper tries to partially solve these problems by pro-
posing a technique associating a measure to each data point,
before grouping nearby measures of similar values on the at-
tractor. The measure of choice is the largest local Lyapunov
exponent, but other measures, such as local spatial dimension,

can be used. The next section describes how the local exponent
is computed, then the way the clusters are made. Results are
given, using the Lorenz system as an example.

2 Theory

2.1 Local Lyapunov exponent computation

There are two main ways of computing the Lyapunov
exponents. The first one uses an estimate of the Jacobian
matrix of the system [6]. It basically consists in estimating a
derivative of the system map, then find its eigenvalues, which
yield the Lyapunov exponents. The problem of this method is
that it is very sensitive to noise, which alters the eigenvalues.
This can result in spurious Lyapunov exponents, and a wrong
estimate of the real ones.

The number of data available for the estimation of the
Jacobian matrix is also critical. It was proposed to solve this
problem by using multiple realizations of the system having
different initial conditions [1]. This however requires very
specific conditions : Either the physical system itself must be
available, so that experiments can be done, or the equations
modeling its behavior must be known, so that simulations can
be run. These conditions are often not met in practice, for
which the typical case is a single realization of the system,
with no or scarce knowledge of its behavior.

It is therefore necessary to use the other Lyapunov exponent
estimation method, that uses a numerical approach. First pro-
posed by Wolf in [7], it consists in estimating the divergence
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rate between two nearby trajectories according to time, by mo-
nitoring the evolution of close elements of the attractor. While
theoretically allowing the estimation of all exponents, it is used
only for the computation of the largest Laypunov exponent.
This technique has shown its usefulness and its efficiency : in
particular, its most advanced implementations [8, 9] are very
robust to noise and length of the data [10].

The chosen technique is based on an older version of the
numerical approach. In [3], Wolff proposed a computation
scheme for the local Lyapunov exponents, along with the
theoretical background justifying the idea of local exponents.
It is however limited to one-dimensional systems and needs be
extended to multi-dimensional ones.

Let it be a time series x.n/ D [x1; x2; Å Å Å ; xN ]. Its diver-
gence rate is directly proportional to the Lyapunov exponent,
and will be positive if the system having generated this time
series is chaotic. If the underlying system governing the signal
is one-dimensional, the local divergence rate is given by

ïi;T D
1

T

1

Ni

NiX
j
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where ïi;T is the Lyapunov exponent associated with the point
xi and the lag T , Ni being the number of points within a
distance h of xi , where h is the radius of a hyper-sphere
centered in xi .

In the case of multi-dimensional systems, the attractor is
reconstructed using the method of delays [6], and to each point
xn is associated a vector in phase space Xn

Xn D [xn xnCú Å Å Å xnC.mÄ1/ú ] (2)

where m is the embedding dimension, and ú the embedding
delays that are necessary in order to correctly reconstruct the
attractor.

The process of estimating the local divergence rate then
consists in computing the logarithm of the norm of the
difference instead of the logarithm of the absolute value of the
difference as in eq.( 1) :
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(3)

Ni then becomes the number of points within a hyper-sphere
of radius h centered in Xi . An example of results is shown on
figure 1.

It is clear from this figure that it is difficult to extract mea-
ningful information from such a computation. It is necessary
to group the exponents into regions in order to be able to ana-
lyze them.

2.2 Clustering of the Exponents

Clustering techniques have been used for a long time in the
image processing and pattern recognition areas, and elaborate
methods have been developed (cf [11] for a recent review on
the subject). Clustering is a rather fuzzy term, which groups
all methods assembling in the best possible way elements
according to given characteristics.
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FIG. 1 — Example of local exponents results on the Henon
attractor. a) Henon attractor itself. b) Values of the local
exponents vs their localization in phase space

Many clustering methods exist, having either a top-bottom
(divide into subgroups) or bottom-up approaches (grouping of
elements), using supervised or unsupervised schemes, hierar-
chical or non-hierarchical approaches. Here, the method that
is looked for is a method that needs no human supervision,
that builds meaningful clusters from the individual points in
phase space, clusters having a physical/logical meaning. The
approach should thus be unsupervised, bottom-up, and non-
hierarchical.

There are methods building clusters by agglomerating
points without any supervision or a priori knowledge on the
number of clusters, whose most advanced versions are the
c-means and fuzzy clusterings ( [12, 13] and refs therein).
They are however not of much use here, since all require a
limited number of characteristics, which themselves can take
only a limited number of values. The clustering is thus made
as follows :

The characteristics of choice in this work are a) the local
Lyapunov exponents, and b) the position in space. The use of
the latter is necessary in order to avoid creating clusters that
group points having no relationship in space, such as clusters
at both extremes of the attractor that have the same exponent
but do not share a common border. The clustering on these
characteristics is then performed :

1) Split the range of values for ïi;T into K intervals of
equal size, K being set by the user. This defines K different
exponents of value Nïk .

2) For each point on the attractor, define a hyper-sphere of
radius r which will be the tentative cluster.

3) Within this hyper-sphere, look for all points having
the same exponent Nïk as the reference point. If they are not
separated by points having a different exponent, they are
considered to be part of the same cluster.

4) If a point in the hyper-sphere is found to have the same
Nïk than the reference point, but is already part of a cluster, the

latter and the cluster of the reference point are merged toge-
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ther.

While this procedure is unsupervised and does not require
the setting of a final number of clusters, this number depends
on parameters set by the user. The first one is the size of the
hyper-sphere h that is chosen for the exponent estimation :
It rules the smoothness of the local Lyapunov exponent by
increasing or lowering the number of neighbors that are taken
into account for the computation.

The other critical parameter is the number K of intervals
that are chosen for the “digitalization” of the exponents. It
does not set the final number of clusters, but gives an order of
magnitude. There can indeed be clouds of points which have
the same exponent Nïk , but which are not connected together.
Conversely, it may happen that there is no exponent of a
given value, which will automatically decrease the number of
clusters.

3 Results

The simulation results show that this technique is relevant
in that it shows the actual local dynamics of the attractor. This
is well illustrated by the example of the Lorenz attractor on
fig. 2
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FIG. 2 — Main clusters of the Lorenz attractor for h D 0:7,
t D 0:15, N D 2000 points, 9 clusters. a) Main cluster, b)
second biggest cluster, c) third biggest cluster

It is interesting to note that the 3 main clusters already
span most of the attractor, and that this remains true for a
wide range of parameters. The separations between clusters
seem intuitively logical : the center part of the attractor is
characterized by quickly diverging trajectories, while the end
of the ’wings’ of the attractor are characterized by more
parallel curves. If the number of clusters is increased, the

center part of the attractor is rapidly split into two separate
wings, with a central part in-between. The next figure shows
the three main clusters of the same invariant set.
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FIG. 3 — Main clusters of the Lorenz attractor for h D 0:5,
t D 0:15, N D 2000 points, 20 clusters

Simulations were run for other chaotic signals, such as the
Henon and Ikeda maps, but the results are not displayed here,
since they are essentially similar to those of the Lorenz system.

4 Discussion

The results show that this natural clustering of the expo-
nents is useful : The results are intuitively logical, but its re-
sults can also be validated from another point of view.

This clustering technique can indeed be compared to the
so-called symbolic dynamics [14, 15], in the sense that it
builds a kind of table of symbols for given regions on the
attractor. However, it is different in the sense that it is applied
on a measure of the attractor instead of the actual area of the
attractor. Moreover, the split up of the attractor is not governed
by an arbitrary decision, but by laws of the system itself. It
can be considered as a variation on the symbolics : symbols
are still given to a regions of the invariant set, but the number
of symbols (i.e. the number of clusters) is decided by the data
themselves instead of the user.

It is also very interesting to compare the results we obtain
with the ones of Mattavelli et al in [16]. In their article, they
present a method for selecting piecewise linear models on a
nonlinear system. The main idea of their paper is to focus on
the inconsistent linear system that arises when considering a
simple linear model and to partition it into a minimum number
of subsystems. The results they present are very consistent
with the results seen on fig. 2 and 3. Most of the differences
between their partition and ours arise from the fact that for
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us two clusters having the same mean Lyapunov exponents
separated by another cluster are kept separate, while they
consider the regions corresponding to identical models in their
graphs.

In its present state, the algorithm suffers from several draw-
backs, one of the most important being that only qualitative
analysis of the Lyapunov exponents is possible. Due to the
imprecision of the computation, the numerical value of the ex-
ponent is not reliable, and the global largest exponent com-
puted from the local ones does not converge to the expected
value, at least for reduced sets of data. However, this does not
prevent a qualitative analysis and a correct clustering, since the
local variations are preserved. Another drawback of the algo-
rithm is its computational load due to the relatively inefficient
clustering technique. A next step should be to search for more
efficient algorithms both for the local exponent computation
and clustering parts.

It is to be noted that while the clustering technique has been
applied on local Lyapunov exponent, it is by no means limited
to this sole value. It could be applied with profit on a variety
of other measures, such as the local intrinsic dimension, or
local spatial dimension, or as a ’natural’ way of computing the
symbolic sequences associated with a signal. The informations
obtained form these measures should give complementary
informations, thus leading to a better understanding of the
local behavior of a signal, and possibly helping in selecting
piece-wise models.
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