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Abstract

The purpose of this paper is the construction and investigation of nonstation-
ary normal waves excited in an ocean of changing depth by a moving source.
In water, the sound speed depends on depth and weakly on the horizontal co-
ordinates and time. The source is radiating a signal with varying amplitude
and phase. The variation of different chcracteristics of the nonstationary nor-
mal waves in time is considered. It is shown that because of Doppler effect the
new propagating nonstationary normal waves can arise. It results in noticeable
change of the sound field of the moving source when compared with the sound

field of the stationary source.

1. INTRODUCTION

At present in ocean acoustics, the nonstationary prob-
lems (in particular, the problems connected with a
moving sound source) are very actual. The sound field
generated in a water layer of constant depth by a mov-
ing waterborne source was investigated in [1}. But in
many cases it is very important to consider the water
layer of changing depth (a model for the continental
slope).

The purpose of this paper is the construction and
investigation of nonstationary normal waves excited in
an ocean of changing depth by a moving waterborne
source. In the water layer the sound speed depends on
depth and weakly on the horizontal coordinates and
time. The depth of the water layer weakly depends on
the horizontal coordinates too. The bottom is assumed
to be liquid. The source is radiating a signal with vary-
ing amplitude and phase. The unknowns are the non-
stationary normal waves excited in the water layer. To
find the nonstationary normal waves the nonstation-
ary version of the method of horizontal rays/vertical
modes is used (see [2], for example).

The typical feature of the present problem is the
existence of a small parameter € ~ 1073+ 10"? charac-
terizing the slow variation of the sound speed in water
ew (2, z,y,t) on the horizontal variables and time. Be-
sides, this parameter characterizes a weak dependence
of the depth of the water layer H(z,y) on the horizon-
tal variables.

2. NONSTATIONARY NORMAL WAVES

The mathematical formulation of the considered prob-
lem is the following. Let ¢min = minew(z,z,y,t) be
the minimum value of the sound speed in water and

d = Cmin/ max |Ocw [Oz| be the characteristic spacial
scale. Introduce dimensionless vertical variable { =
z[d, slow horizontal variables £ = (&1,&;) = (sz/d,ey/d)
and slow time 7 = gcpint/d. In terms of dimensionless
variables the equation of wave propagation with the
right-hand side describing the moving point source is
of the form
02U , [0°U  8*U 0, . = O
FC?-*-E 86% + 8§§ —n(c’éaT)aTz]‘_
= —A(r) exp[i(q/e)p(T)]6(C — Go (7)) X
X 8(€ = &(T)). (1)

Here ¢ is the Dirac delta function; n is the index of
refraction defined by the formula

_ nW:cmin/cW’OSC§h7
- ng = Cmin/CHa C > h7

—

h = h(€) = H/d is the dimensionless depth of the
ocean; cy is the sound speed in a liquid bottom; ¢ =
Co(T), = 50(7) is the trajectory of a source motion;
A(r) and ¢(1) are the amplitude and the phase of a
source, respectively; A(7)|,<o = 0. We shall assume
that all the functions which are included into (1) have
the derivatives of the order of unity and ¢'(1) < 0,
where a prime denotes the derivative with respect to
slow time 7. The parameter ¢ characterizes the value
of instantaneous frequency of a source w(t) in units of
the characteristic frequency of the problem ¢y, /d:

w(t) = —d[(¢/e)p(T)]/dt = —q(cmin/d)¢'(7) > 0.

At Ehe air/water boundary ¢ = 0 and the bottom
¢ = h(§), the following boundary conditions should be.
satisfied

o0 U=
(=0 (=h-0 {=h40
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— = — —-e(V UV h =v— .
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Here v is the ratio of the water density to the density of

a liquid bottom, V; = 78/8¢, + 7 8/8&,; (VLU, VL R)
is the scalar product of vectors VU and V k.

The nonstationary normal waves U,,,, m = 1,2,...
propagating in the water layer and excited by the mov-
ing waterborne source are seek in the form [1]

U = exp(i(q/€)0nm Z\Pm(c Ere.  (3)

The normal waves U, should satisfy the homogeneous
wave equation (1), the boundary conditions (2) as well
as the principle of limiting absorption with { — +o0.
Moreover, U,, must satisfy the concordance conditions
with the function describing the source with (—(o(7) —
0 and [€—~£y(7)| — 0. In the expansion (3), phase func-
tion ﬁm(f, 7) and coeflicients U, (g,{, ),m=12,...,
7 =0,1,... are to be determined.

Substituting U,, in the form (3) into the homoge-
neous wave equation (1) as well as into the boundary
conditions (2) and equating coefficients of ¢ to various
powers to zero we shall obtain a sequence of the Sturm-
Liouville problems for the functions ¥,,;(¢,€,7) in the
semi-infinite interval 0 < ¢ < oc:

42V, 80,,\ 2
e T { (52) ‘(Vl"m)z] Hi

; e‘q{2(vlem,vwm,j_1)—

08,, 0V, i_
_ gp2lmZTm—l
" or T ar T
%0,
+ [AJ_am - nZ ( 37_2 ):l \Pm,j—l} +
8V, i
-+ AL‘IJm,]-_g—nQ—87§J——2 :O, (4)
j’g:o 0, \Ijm] 0 \Ilmjlc B0 mjlg:h+d(5)
d¥ .. .
{__dzi - 2(J(V_Lema‘7_l.h)q’m,j——1 -

- (wm,j_z,vlh)} -

(=h—0

d¥.,; .
I/{ dC] —zq(Vlem,Vlh)‘Ifm,j_l —

- (vlqjm,]-_z,vlh)} . (6)
{=h+0

Here A} =V7, and we assume that ¥,, _,=0,, _;=0.

For ¥,,q, we get the homogeneous Sturm-Liouville
problem. Let uZ = (V,6,,)? be the eigenvalues and
Fm(€) = fm(C, €, 7) be the eigenfunctions of this prob-
lem. Obviously,

\I/mO(Cv gv T) -

where A,p =
gand T only.

As p,, depends on 84,,/07, the equality p? =
(V.0,,)% is the equation of the form

P (00, /0T) = (V 10n) (8)

Amo(f_; T)fm(ngvT)’ (7)

Apmo(€,7) is the function depending on

for the phase function Om(f, 7) of the nonstationary
normal wave. The dependence of p,, on the deriva-
tive 00, /97 essentially distinguishes the nonstationary
eikonal equation (8) from the classical eikonal equa-
tion for the normal wave in the method of horizontal
rays/vertical modes [2].

It is possible to rewrite the nonstationary eikonal
equation (8) in the form solved for 96,,/d7:

00, /0T + Hn(V10m)", €, 7) = (9)

Here

. 1/2
Hon = (Va0 NAMZ? 4 (N2 )M

m

and the following notations are introduced

= </h +u/°°) f2(0)d¢
= ([ oo [) s
N, ) = (/ +u[lw>(dfm/dc>2d

It can be shown that the function H,, is independent of
00,,, /0t despite the fact that the eigenfunction f,,(¢)
and consequently the integrals N2, M2 (N, )? depend
on 06,,/90r.

The Hamilton-Jacobi equation (9) should be sup-
plemented with the initial data connecting the function
0.,(€,7) with the phase function of the source at the
trajectory of its motion. If the trajectory of the source
movement is given in parametric representation 7 = «,
f: f}(a), the equality of the phase functions at the
source can be expressed as

Hm(é; 7')

2(d¢) dc,

T=a, £=€o(a)

As Eq. (9) is nonlinear it is necessary to give the values
of derivatives 06,,/8r and 30,,/0¢ as well:

06, /0T .. =0,
=0, {=fo(a) (11)
09 /O]

. = K,e€,
r=a, £=€o(a) m¢
where € = {cosd,sin?) is the unit vector. The initial
data on the right-hand sides of (11) must satisfy the
concordance conditions

Qe = Hon (K2, E6(a), @), (12)
QO = K (€, 0(a)) — ¢'(a).
Here #(c) = déy(7)/d7|,=q is the dimensionless veloc-
ity of a moving source at instant 7 = «. The equali-
ties (11) define Q,, and K,, as functions of a and 9.
The solutions of the Hamilton-Jacobi equation (9)
satisfying the initial conditions (10), (11) can be found
by means of the method of characteristics [3]. The



characteristic system corresponding to (9) is written
in the form

dr ) dé OH d_pg OH,

dS dpids afé)’:’ . dsl 2 87‘ (13)
E_ _"'a—&—, t= 1,4,

where Hy = H(p%,€,7), p = |p]. The initial data are
given as follows

7-

-0 ﬂ = fo(a)’

= O,
. (14)
= Q. 5)_0 K&

0
P s=0

If the solutions of the characteristic system (13)
satysfying the initial conditions (14) are known

r=s+a, &s)=

&, 9, s),
po(s) = (15)

Po(a Y 5)> p,(S) pz(a ) 3)7 1= 1 2

the phase function am({, ) is found according to the
method of characteristics

b (&, 7) = pla) + /0 [Po(s) +Z:Pi(3) dgi(s)/ds| ds,

where the integral is taken along the characteristic.
The parameters o, 9, s (the space-time ray coordi-

nates) are connected with the Cartesian coordinates

£,&, and time 7 by the first three equations of (15).

Under fixed o and ¥ these equations give the paramet-

ric representation of a space-time ray.

The ray coordinates have the following meaning:
the coordinate « is the instant of radiation of the field
of a normal wave registered at the point £ at the mo-
ment 7; 9 is the angle of the £;-axis with the horizontal
ray emerging from the source at the instant of radia-
tion and arriving to the observation point (&;,&;); s is
the time of propagation of the normal wave field.

Let us obtain the equation for the factor Amo(f, T)
in the expression (7) for ¥,,,. This factor must be
chosen so that the nonhomogeneous Sturm-Liouville
problem (4)-(6), 7 = 1 for ¥,,; be solvable. Introduc-
ing the three-dimensional vector W, = (Vi1 Vi 2, 1),
where V. = (Vim1,Vin2) = 0Hpm /3(V18m), the solv-
ability condition can be written in the divergence form

div (Eme) + Ymém = 0. (16)
Here the following notations are introduced

Ym = (1 - V)(Vmﬁvl )f2 (h)N;n‘Z -
m - _(agm/aT)]‘l2 mos

= / (2, /67)f2.(C) dC.

LiM;?,

Transforming div (£, W,,) in the usual way to the
form J;'0(Jn€n)/8s, where Jp, is the Jacobian of
transformation from the Cartesian coordinates &;,¢,
and time 7 to the ray coordinates, we obtain the new

form of the transfer equation (16) — as an ordin CL\/
differential equation along a space-time ray. Integrat-
ing this equation, we get

Amo = Bumo(a,9)[—(80,,/07)M2 T, )" ? x
X ex (—1/5 ds)
p 2 /o Tm .

The multiplier B,,o(a,?d) (the excitation coefficient
of the normal wave in the adiabatic approximation)
is found with the help of the principle of localization
from the comparison of the main term of the expan-
sion (3) with the nonstationary normal waves in the
exactly solvable problem for the stratified water layer
with H = const and the waterborne source moving
rectilinearly and uniformly at the fixed depth [4]. The
formula for B, has the form

Bumo(e,9) = €T A(a)[8m(g/e)]7H/? x
X (1= B, cos ﬁ)‘l/z}m(co(a)).

Here A(e) is the amplitude of a source at the in-
stant a of radiation of the field of a normal wave;
B = v/v8; v is the constant dimensionless veloc-
ity of a model source; v& = |5E|; 3¢ = OH,/OP is
the group velocity vector of the nonstatlonary normal

wave; }m(() = fm(C)(N2)~1/2 is the normalized eigen-
function.

The analysis of the system including the first three
equations of (15) as well as the equations (12) demon-
strates that in a waveguide because of Doppler effect
the new propagating nonstationary normal waves can
arise. If results in noticeable change of the sound field
of the moving source when compared with the sound
field of the stationary source.
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