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RESUME

Dans cet article nous abordons le probléme de la détection
des ondes gravitationelles noyés dans un bruit normal blanc
avec densité spectrale inconnue. En utilisant la strategie
de le Rapport de Vraisemblance Generalisé, on presente un
nouvel détecteur non-paramétrique, et on montre qu’il peut
étre réalisé & laide d’un algorithm de Fast Fourier Trans-
form. Enfin, on montre que cet détecteur obtient une prob-
abilité de fausse alarme constante par rapport a la densité
. spectrale du bruit.

1. INTRODUCTION

In its simplest form, namely neglecting tidal effects, post-
Newtonian corrections, doppler shifts (due to the earth mo-
tion), and taking the eccentricity of the orbit to be zero, the
noise-free response of the detector to a Gravitational Wave
(GW) produced by coalescing binaries is

S(t) = F+h+(t) + Fxhx(t) (1)

where the subscripts “+” and “x” denote the polarization
of the two components [1] and where

RO = B+ costios [ox [ erde+e] @
he(t) = 2B(t)cosisin [27r /tt f(g)d§+¢] 3)

with 7 the angle between the line-of-sight of the detector and
the orbital plane of the binary system, {y the arrival time,
and ¢ a phase term. As to B(t) and f(t), they are given by

BO) = LLiaMai) 4
_ -3/8
0 = 6(1-2) 5

wherein g and M are the reduced and the total mass of the
binary system, respectively, r is its distance from the Earth,
while 7 is the signal duration, which in turn is related to y
and M. In conclusion, the useful signal can be cast in the
compact form

s(t) = HA(t,to, 7) cos [B(t, to, 7) + @] (6)

ABSTRACT

In this paper we handle the detection of Gravitational
Waves in the presence of white Gaussian noise with un-
known Power Spectral Density. Based upon a Generalized
Likelihood Ratio optimization strategy, we present a new
non-parametric detector, showing that it lends itself to im-
plementation through Fast Fourier Transform algorithms.
Finally, we show that it achieves Constant False Alarm Rate
with respect to the noise power spectral density.

The observable waveform, 7(¢) say, is a corrupted version
of (6), due to the presence of an additive noise component.
Thus, the detector is to implement the statistical hypothesis
test:

Hy : r(@t)=s(t; H,®,t,7)+n(t) 0<t<T
Ho ¢ r(t)=n(0) o<t<r

where n(t) is a sample function from the noise process, which
is assumed to be Gaussian, and T is the observation interval.

If the signal to be detected were completely known, the
optimum - in the Neyman-Pearson sense - receiver would
consist of a plain matched filter, whose sampled output
should be compared to a suitable detection threshold. How-
ever, the signal contains four unknown parameters, such as
the amplitude H, the phase ®, the arrival time ¢y and the
duration 7. This implies that the hypothesis Hy in (7) is
composite: A suitable strategy for circumventing the a-priori
uncertainty as to the signal parameters is the Generalized
Likelihood Ratio Test (GLRT), which has been already pre-
sented in [2] under the assumption that the noise spectral
characteristics are perfectly known.

In real situations there is not perfect knowledge as to the
noise due to the inherent difficulties in performing signal-free
measurements. We consider here the case that the noise
is white, but with unknown power spectral density (PSD)
No/2, whence both hypoteses in (7) are composite.

The final aim is to obtain a non-parametric detection
structure, namely wherein a-priori knowledge of the noise
PSD is not required either for evaluating the test statistic
or for setting the threshold level. The paper is organized as
follows: in next section, we borrow some known arguments
from the statistical detection theory and use them to obtain
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the scheme of an optimized parameter-free detector, while
in section 3 we present a completely numerical implemen-
tation of such a structure, showing that all of the relevant
statistics may be efficiently calculated via a digital comput-
er. Finally, section 4 contains concluding remarks and hints
for future research.

2. DETECTOR DESIGN

Since the noise is Gaussian and white, its projections
along the versors of any orthonormal basis of the space
L%(0,T) of signals with finite energy in (0,7) are indepen-
dent and identically distributed Gaussian random variates.
Thus, denoting by 7x,k = 0,1,... the projections of the
received signal along the versors of an arbitrary orthonor-
mal basis, the continuous-time decision problem (7) can be
reduced to a discrete one in the form

Hi : rp =sp+n;
Hy : rp=mnp (8)

wherein s = s;(H,®,10,7) and n; denote the projections
of the signal and of the noise, respectively. If » is the vector
of the first N projections of the received signal, then the
likelihood functional can be written as

Alr(t); No, H, ®,t0,7) = lim_ f"”?:i;"{;('f) SO
Wolilo

As expected, the functional depends upon the unknown
noise and signal parameters. In order to circumvent the
uncertainty as to Ay, H and ®, we resort to the GLRT,
namely to the test

Hy
MaXH,®,tq,7,No fT;NO:H)¢ytO7TIH1 (’P) >

maxXa/, fT;NoIHo(r) 150

Ao (10)

Thus the test statistic is obtained by replacing in the like-
lihood functional A [r(t); No, H,®,{o, 7] the unknown pa-
rameters by their respective maximum likelihood (ML) es-
timates under both hypotheses.

At first, we leave aside the problem of maximizing with re-
spect to 7 and 5. Under Hp hypothesis, and assuming that
the expansion basis is real, r is a real zero-mean Gaussian
random vector whose entries are independent and identically
distributed with variance Ag/2. Accordingly, the logarithm
of its probability density function (pdf) is maximum at

o2 = il (1)

Under Hy, instead, we have to solve the following system
of simultaneous equations:

& |~ Y InaNg — Fllr = Xso+ Vs, |[?| =0

5 |—FhaN = Fllr = Xs.+ Vs, || =0 (12)

ﬁo— —]—;’—lnﬂ/\/’o—x}gﬂr—){sc—{—YssHZ =0
wherein || - || denotes Euclidean norm, X = Hcos® and

Y = Hsin®, while s, and s, are the vectors of the first N
projections of s.(t) = A(t) cos B(t) and s;(t) = A(f)sin B(t)

along the basis, respectively: thus, the vector s = Xs.~Ys,
represents the first NV projections of the signal s(t) along the
basis.

The solution is

— 1 —
No/?: ”N:”TN—SNHZ (13)

where 5y = X 8. — Y 85, with X and ¥ the ML estimates of
X and Y, respectively. Moreover, denoting by Q. and @),
the energies of s, and s;, respectively, and introducing the
dot product Qs = Qe =< 8¢, 85 > the ML estimates of X
and Y are written as

¢l oo g
(x-:)
o e gy s
=— =
(--)
For sufficiently high N, it can be shown that @, = @, and
Qs = 0, then the previous equations simplify to

(14)

Qe

Y:—é<'r,33>

X=21
{ < 7,8, > (15)

Direct substitution of the above results into the likelihood
functional yields, for the GLR:

» \ N/2
PN 7']

A r(t);No,H,cp,to,?] =max lim | —&_ (16)
Qs ~

Notice that, in principle, the functional (16) is not ensured
to converge, since it is not a likelihood ratio, whence the
Grenander’s convergence theorem [3] cannot be directly ap-
plied. However, it suggests a sub-optimum detection struc-
ture, wherein a decision as to the presence of a GW is made
based on the test

Hy

N DL
BT — sl 5 (a7)

which, based on (15), can be equivalently re-written, for
sufficiently high N, as

-~ [<r.8.>) | k7.8.>F Hy
H? +
Qc —_ Q Qc > AO (18)

c 2 <
PPN 5

where H2 = X2 4+ V2.

Such a structure deserves some further comments. First,
notice that the test statistic on the Left-Hand Side (LH-
S) does not depend on the noise PSD, which factors out
the term on the LHS: as a consequence, the threshold lev-
el Ag is itself independent of Ny/2, implying that the re-
ceiver is non-parametric. Next, the numerator of (18), for
increasingly high N, is just the squared envelope at the out-
put of a filter matched to the (normalized) complex signal
[sc(2) + 7s5(t)])/@Q., in keeping with the results established
in [2]. As to the denominator, it can be easily interpreted
as an estimator of the noise PSD. In fact, ||r]|?/N can be




shown to converge in the mean square sense to No/2 for in-
creasingly high N under both Hy and Hg hypothesis. This
is due to the fact that the useful signal admits only a lim-
ited number of significant projections along an orthonormal
basis, so that the performance of the noise PSD estimator is
not affected asympiotically by the hypothesis being actually
in force: what is influenced by the presence of a useful signal
in the received waveform is the rate of convergence of the
estimator towards its limit.

So far, we have left aside the problem of maximizing the
functional (18) with respect to 7 and #5. The maximiza-
tion with respect to fg is easily accomplished by observ-
ing the signals at the output of a causal filter, matched to
[s¢(t) + jss(¢)]/Q. and evaluating H? as the maximum val-
ue in the observation interval. Finding the maximum with
respect to 7, would in principle require a bank of infinite-
ly many filter, matched to the admissible signal durations:
a viable solution is the classical “discrete bank of matched
filters”, wherein, upon discretization of the unknown pa-
" rameter into L classes, the received signal is fed to a bank
of receivers, each matched to one of the L admissible sig-
nal durations. Each receiver estimates the maximum H?,
and the maximum between the L selected values is finally
adopted as an absolute maximum: a scheme of this detector
is depicted in figure 1, wherein each block denoted as “re-
ceiver ¢” singles out the maximum H? which is observed in
the interval (0, T), assumning that the signal has duration ;.

3. NUMERICAL IMPLEMENTATION

So far the basis {¢;(t)} has not been specified as yet,
since, for increasingly high N, the final result is necessarily
base-independent. If, conversely, the sub-optimum structure
(17) is employed, the choice of the basis may turn out to be
influential with respect to both the performance and the
complexity of the detector. From now on, we adopt the
following basis in (0,T)

) =0

dr(t) = % cos (”T—kt) ,
Zsin 2]k odd

EREEr

Substituting back into (18), we have, for the terms in the
numerator:

2 WRE k b
C-grr g rl)s(n))) e

(N-1)/2
. 9 EN . [k
A RIPREIGHONEE

k=1

while, for the denominator, we have

Il _ 1 SR (]
N = WF |R(0)]% + 2 ; R<7> (22)

where R(f) = Flr(t)], Sc(f) = Fls.(t)], and S;(f) =
Flss(t)] denote short-term (i.e., computed on the inter-
val (0,T)) Fourier Transforms (FT), and the conditions
Se(0) = S;(0) = 0 have been exploited.

k even (19) .
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Figure 1: Non-parametric detector for GW

Even so, however, the receiver implementation requires
evaluating and sampling the FT’s of continuous-time wave-
forms. In order to show that the receiver admits a pure-
ly digital implementation, we first observe that feeding the
received signal, which is bandwidth-unlimited under both
hypothesis, to a pair of filters, matched to s.(t) and s,(¢),
respectively, is equivalent to feeding to the same filters a
filtered version of r(t), provided that the spectral content
in the bandwidth of these filters remains practically un-
changed. Thus, r(t) can be pre-processed by an anti-aliasing
filter whose bandwidth equals the common bandwidth, B
say, of the two matched filters. Accordingly, if we denote by
rp(t) the filtered version of r(t), and by T, = 1/(2B) the
sampling period, (21) are written, after some algebra:

N T 2L3-1
X = Q—c Z ra(mTe)s.(mT,) (23)
¢ m=0
R T 2Ls-l
Y = —bi > rp(mT.)s,(mT.) (24)
¢ m=0

wherein Lp = BT and it has been implicitly assumed N >
2Lp.

Introducing the constraint that s.(t) and s,(¢) be non-
zero for 1y <t < to + 7, we obtain

N T no+M,—1
% - Q_c[ SN s(mTyra(mTy)|  (25)
¢ m=ng
N T no+M,~1
Y = “—Q—c— Z ss(mTC)TB(mTC) (26)
¢ m=nqg

with ng = to/T; and M, = 7/T.. We recall here that both
ng and M, are unknown quantities, wherein numerical im-
plementation of the optimized test still requires joint maxi-
mizatlon with respect to these discrete parameters. Notice
that, since (25, 26) represent cross correlations between the
sampled versions of the received signal and s.(t) and s,(t),
they can also be obtained by filtering the sequence rg(nT;)
through two filters, matched to s.(nT.) and s;(nT,), re-
spectively. Precisely, if we introduce the sequences §.(n)
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and §;(n) as those obtained by sampling s.(t) and s,(t)
as tp = 0, namely as two sequences lasting from 0 to
M, — 1, then the above correlations can be regarded as
the output of the causal filters he(n) = §.(M, — 1 ~ n)
and hs(n) = $.(M, —1—n) at the time ng + M; — 1: thus,
searching for the maximum with respect to ng is tantamount
to observing these outputs and selecting the largest one.

Unfortunately, a similar approach cannot be followed for
the denominator of the test statistic (18), mainly because
the received signal cannot be sampled without producing
aliasing. However, we recall here that, unlike the useful sig-
nal, the noise occupies the entire recetver bandwidth, and
that a reliable estimate of the noise floor could be achieved
starting upon signal-free data. On the other hand, these da-
ta can obviously be collected by sampling the out-of-band
part of the received signal, namely by considering the fre-
quencies outside the useful bandwidth (— B, B). Denote now

by W >> B the bandwidth of a low-pass filter, which in-

troduces negligible distortion for |f| < W and by rw (¢) the
received signal, as observed at the output of this filter. If
W > B, an estimate of the noise PSD can be obtained
from (22) with Rw(f) = F[rw(t)] in place of R(f). We
stress here that the duration of this filtered version is ap-
proximately 7'+ 2/W ~ T; since, in our setup, T >> 1/B
and 1/B >> 1/W, then the duration of the signal rw (t) is
practically the same as »(t).

Assuming Ty = 1/(2W), it can be readily shown, based
on the sampling theorem, that

k
Rw (?) ~TwRw(k), k<TW =Ly (27)

wherein Ry (k) denotes the Discrete FT (DFT), computed
on 2Lw points, of the sequence rw (nTw ), whose length is
approximately 2Ly . With this approximations, we obtain
Lw—1

No _ Tiy |Rw ()P +2 > |Rw (k)| (28)
k=1

2 ~ NT

which can be efliciently computed by resorting to FFT al-
gorithms for calculating the DFT’s. A scheme of the digi-

- tal processing scheme implementing the optimized test is as
depicted in figure 2, which substantially reproduces that of
figure 1, except that the matched filter receivers operate on
the sampled version of the received signal, according to e-
quations (25,26) and the noise PSD estimation is performed
via FFT. Precisely, the received signal is first fed to an
anti-aliasing low-pass filter and subsequently sampled at fre-
quency 2W, thus forming the sequence rw (nTw ); the lower
branch performs the estimate of the noise floor by averag-
ing the square modula of the FFT of the received sequence,
according to equation (28), so as to provide Ny/2. In the
upper branch, a numerical reduction of the sampling fre-
quency is performed by first filtering the received sequence
through a numerical low-pass filter whose cut-off frequency
is vo = B/(2W), while the sequence rg(n) of the samples
rg(nT,) = rp[n/(2B)] is extracted from the sequence ri (n)
through decimation by a factor W/B (assumed heretoafter
to be an integer). This sequence is forwarded, along with
the estimated noise PSD, to the block denoted as “conven-
tional receiver”, iinplementing the matched filterings and
the search for the maxima with respect to ng and M.

down
—{ LPF sampl.
konventional
—— LPF }————-lsampl. receiver
FFT
s & —
PSD estim.

Figure 2: Numerical implementation of the detector

4. CONCLUDING REMARKS

In this paper the problem is considered of detecting grav-
itational waves from coalescing binaries in the presence of
white noise with unknown power spectral density. Based
on a Generalized Likelihood Ratio optimization approach, a
new non-parametric detection structure has been presented,
along with a possible digital implementation. Even though
a thorough performance assessment has not been carried on
as yet, preliminary results seem to indicate that this de-
tector incurs a negligible detection loss, as measured with
respect to the conventional receiver, operating in the pres-
ence of noise with known spectral characteristics. Even so,
however, this detector is not able to combat all of the other
noise components, i.e. seismic noise, whose spectral char-
acteristics are only approximately known; a more realistic
design setup should thus consider the presence of noise with
either partially known or completely unknown covariance
function: this topic is the object of current research.
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