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RESUME

Dans cet article la détection des signaux avec des
paramétres inconnues dans un foullis radar non-gaussien
est présentée. Le bruit est modelé comme une
combination de foullis cohérente avec une distribution
K, de foullis cohérente gaussien et de bruit thermique.
Deux possibles stratégies de détection d'un cible
Swerling I noyé dans le bruit mentionné ci~dessus ont été
analysées: la stratégie du Rapport de Vraisemblence
Generalisé et le test de Neymann-Pearson. Des
simulations Monte Carlo ont été realisées pour évaluer
les Caractéristiques Opérationelles des detecteurs. La
probabilité de détection, pour une probabilité de fausse
alarme donnée a été calculée en fonction du rapport
signal-bruit et des paramétres du bruit.

1. INTRODUCTION

The coherent detection of targets against a background of
correlated non-Gaussian clutter is a problem that in recent
years has gained importance in the radar community. In patiala
the detection of known or partially known signals against K-
distributed clutter has been tackled in [1-6]. But the papers [1-
5] do not consider the presence of a mixture of different types
of clutter and the presence of thermal noise, which is always
present in radar receiver. As a matter of fact, operational
situations of interest refer to the contemporaneous
backscattering by ground and sea patches or clouds and sea.
The radar returns from ground and clouds may be described by
a Gaussian distributed process, while the echoes from sea
follow a K-distributed random process. While the paper [6]
does not consider partially known targets, it assumes the
signal to be deterministic and perfectly known. Objective of
the present paper is to remove these limitations. Specifically,
two strategies to detect a fluctuating target, according to
Swerling-I model, against a mixture of K-distributed and
Gaussian distributed disturbance (Gaussian clutter plus white
Gaussian thermal noise) are presented. The generalized
likelihood ratio test (GLRT) strategy makes use of the m-
integrated pulses from the cell under test to estimate the
unknown amplitude and initial phase of the useful signal. This
strategy is compared with the Neymann-Pearson (NP) strategy,
obtained by averaging the conditional likelihood ratio with
respect to the a-priori distributions of the unknown
parameters. Finally, the performance of these receivers is also
compared to that of mismatched receivers, designed to take
into account only one type of disturbance, either Gaussian or
K-distributed.
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In this paper the detection of signals with unknown
parameters in non-Gaussian clutter is considered. The
disturbance is modelled as a mixture of coherent K-
distributed clutter, Gaussian distributed clutter and
thermal noise. Two possible strategies to detect a
Swerling I target against the above mentioned
disturbance have been analyzed: the Generalised
Likelihood Ratio Test (GLRT) and the Neyman-
Pearson (NP) test. A Monte Carlo simulation has been
carried out to evaluate the Receiver Operating
Characteristics (ROCs). The probability of detection,
for a given false alarm probability, has been
calculated as a function of signal-to-noise ratio and of
disturbance parameters.

2. MULTIDIMENSIONAL COHERENT CLUTTER.
MODEL AND OPTIMUM DETECTOR STRUCTURE

Assume that the radar transmits a train of m pulses, the
corresponding sequence of m complex echoes to process is
modelled as a m-dimensional complex vector z. In absence of
useful signal only the disturbance contributes to the observed
sequence, so we have z=d.

In this paper d is modelled as the sum of three independent
terms: d=d; +jd, =+Tx+cg+v, where d, and d, are
the vectors corresponding to the in-phase and quadrature
components of the complex envelope. v is the vector
representing the Gaussian distributed thermal noise, \/? X is

the product model of K-distributed clutter and ¢, is the
(Gaussian clutter. v is a vector of uncorrelated zero mean and
variance 207> Gaussian random variables. The clutter term ¢
is characterized by a Gaussian probability density function
(pdf) with zero mean, variance 207, and normalized
covariance matrix M. The m-dimensional complex vector
X (usually named speckle) is Gaussian with zero mean,

variance 2 and normalized covariance matrix M, the variable

T (referred to as fexture) is Gamma-distributed [3] with mean
value 4 and order parameter v (v controls the deviation
from Raleigh statistics). This product model corresponds to
the case of pulse-to-pulse complete correlation of the texture
[4], the case of partial correlated texture has been tackled in
[5]. Given a specific value of T , the vector d is the sum of
three independent, zero mean, Gaussian vectors. Its conditional
covariance matrix is given by:
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M, & %L’{dd“[r} =My + oM+ 0T (D)
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Define s to be the m-dimensional signal vector embedded
in K-distributed clutter plus Gaussian disturbance. In [6] the
signal has been assumed completely known. Normally the
complex amplitude of the useful signal is unknown to the
detector. So, the m-dimensional complex signal vector is more
realistically modelled as follows: § = arp where o = Ae’® is
the unknown complex parameter. The amplitude A and the
initial phase ¢ are scan-to-scan fluctuating according to the
Swerling-I target model (i.e. A is assumed to be Rayleigh
distributed and ¢ uniformly distributed in [0,27]). p is a
perfectly known complex vector with components
p, = /"' Tis the radar pulse repetition time and f, is the
target Doppler frequency. It is worth observing that f,, is
assumed to be known; but, in practice, a bank of filters is
built to determine the Doppler shift of the target. The clutter
has been assumed, without loss of generality, with zero-mean
Doppler shift. In fact detection performance depends only on
the value of the difference between the Doppler frequency of
the target and the one of the clutter, but not on their absolute
values.

The detection procedure is given by the decision between
the two hypotheses H, and H,, absence or presence of the
signal in the cell under test, after the vector z has been
received. If we consider the coefficient ¢¢ as a random
variable, the optimum test, in Neyman-Pearson sense, can be
obtained by averaging the conditional likelihood ratio L(zla)
with respect to the distribution of « [1]. Therefore,
integrating with respectto A and ¢ and after straightforward
manipulations, the detection strategy results

[ M B g O — Qe In(T)dT % 0 )
. dr H,

and
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where 4,(z)=z Mdl,z(p Mqrp+ai) Ip M.z

q,(z) £2"M; z. p(7) is the gamma pdf, o3 is the signal

djz
amplitude variance, and A is the threshold, set according to
the prefixed probability of false alarm.

A different approach to the detection problem could be
followed by modelling ¢ as an unknown deterministic
parameter, instead of a random variable (this means that we do
not make use of the a-priori information about ¢¢). In this
case, a possible solution is obtained by means of the GLRT
approach, whereby the unknown parameters are replaced by
their maximum likelihood (ML) estimates under each
hypothesis. The decision wili be taken by comparing the
likelihood ratio, in which the unknown parameter has been
replaced by its ML estimate, to the threshold A, so obtaining
the strategy

H,
L(z|d,y, ) i A ®3)

The ML estimate of « is easily obtained [2,4]:
Oy = PHM;f,Z/ p”M;[I,p. In this case the detection strategy

results

ﬂM dlrl_l[e“’z(‘”z - Ae™*@ p(7)dT g’ 0 @
0 0

2

where g,(z) 2 2" M zp" M p- ‘pHM;sz .

It is worth noting that z)=1limg,(z), so the
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strategies (2) and (4) are equal when p"M;p>>1/c3,
namely when SCR is high. In order to underline the
advantages of the detectors matched to the proper model of the
clutter, we compared the performance of the NP (and GLRT)
detector with that of the receiver optimum against only
Gaussian clutter or only K-distributed clutter. When the
disturbance is supposed to be Gaussian with the same
covariance matrix of the actual disturbance

M, = %E{dd”} = UM, + 0:M_ + 6’1 5)

it can be seen that the NP detector for Swerling-I signal is the
well known whitening matched filter. The optimum detection
strategy is the following

H,
pM:| 2 A ©)

Moreover, it can be shown that the corresponding GLRT
detector implements the same detection strategy. For a given

value of 7, under each hypothesis, the statistic p”M;’z is
Gaussian with mean and variance values given by

E{p"M;4r,H,} = E{p"M;z

T,H}=0 O

-1
M;z

oy, 2var{p"M;z, H,} =p"MM,,

0'1211 2 Var{p“M;’zlr, HI} = O'ZIT +0’(p"M;'p)’

Therefore, the probabilities of false alarm and detection are
easily obtained

Py, = Texp(— l/oér)p(r)dr ®
0

P, = Texp(— /’l/oflr)v(r)dr (10)
0

When the receiver is optimum for K-distributed clutter
only (with the same covariance matrix of the actual
disturbance) the detection strategies of K-NP detector and of K-
GLRT detector can be obtained from (2) and (4), respectively,
by simply replacing M ds with 7, M, where 7, is a gamma

distributed variable with mean value [, = /i + 05 + 0’ and
order parameter v. My is such that

LM, =M, = uM, + iM,, + 01 (1)

The detection loss of these mismatched detectors can be defined
as the incremental SNR required to obtain the same P, for a



fixed P;,, signal and disturbance being equal for the two
cases.

3. PERFORMANCE ANALYSIS.

In order to obtain the performance of the NP receiver (2)
and of the GLRT receiver (4) we used Monte Carlo
simulations because closed-form expressions for the pdfs of
the test statistics in (2) and (4) are not available. In the
evaluation of the ROCs for the likelihood ratio test of
equations (2) and (4) the product f,T has been set equal to 0.5
and the mean value of the clutter Doppler spectrum has been
assumed to be zero. All the simulations have been carried out
keeping constant the total clutter-to-noise power ratio:

CNRy,; = (u+02)/ O’f,| ., =304B. The noise power o7

has been set to unity; the signal-to-noise power ratio SNR
and the K-distributed clutter-to-noise power ratio CNR, have

been defined as follows: SNR 2 o2 /262, CNR; 2 ol /o?.
According to a widely assumed model an exponential
covariance function has been assumed for the clutter [2]. So,
the total disturbance covariance matrix M ds has elements
i—j i 2
m,; = 1pl " + o2plT + 625,

vy

(i,j=1,2,....,m), where Sij is

the Kronecker's delta, py and p; are the one-lag correlation
coefficients (in the simulation we set M, =M_, i.e.
Py =D¢). The assumption M, =M, greatly reduces the
computational effort, but it also has a physical justification.
While the texture variable represents the characteristics of the
observed scene, the speckle takes into account the coherent
sensor effects. In these terms the correlation structure of the
speckle is independent of the texture distribution. The two
matrices are generated by the same phenomenon (the antenna
rotation), so they are almost identical.

Some numerical results are reported in the following
figures. Fig. 1 and 2 show the performance of receivers (2) and
(4) and, as comparison, the performance of optimum receiver
for known signal [6] that implements the following detection
strategy:

" exp[ (- op)" M. (2 - ap) 2p()de
2 A2

0

[,
0

X exp[- 2'Mz /Z]p("c)dr

T M,
0

In this case « is a deterministic known parameter instead
of arandom variable as in (2) or an unknown parameter as for
the GLRT detector. In these figures m=16, v=0.5,
SNR=18dB. Fig.1 refers to the case CNRy =27dB
(CNR, = 27dB), while Fig.2 refers to CNR, =304B,

(CNR, =—dB). The curve relative to the NP receiver is

very close to the curve relative to the GLRT receiver, that is -

they have almost equal performance. In Fig.3 and Fig.4 the
ROCs of the same three detectors are reported. For each
receiver these figures show a couple of curves. The upper

curve is relative to P, =107 and the lower curve is relative
to P,,=10". In Fig.3 CNRy=CNR;=274B and in
Fig.4 CNR, = 304B.
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Fig.5 shows the performance of the optimum detector (2)
(OPT.DET) and of the detector (6) (GAUSS.DET), matched to
Gaussian disturbance only, with the same covariance matrix of
the actual disturbance. The advantage of a detector that takes
into account the effective presence of both K-distributed clutter
and Gaussian clutter is evident, especially for a low signal
power.
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Fig.6 shows that the performance of mismatched detectors
NP and GLRT, optimized taking into account the presence of
only K-distributed clutter. The input of the analyzed detectors
is Gaussian correlated clutter and thermal noise (worse
condition), We note that the GLRT receiver outperforms the
NP receiver only slightly. This is not in contrast with the

theoretical optimality (in Neyman-Pearson sense) of the NP
detector, since this detector would be optimum if the actual
input was only K-distributed clutter. Moreover, by comparing
Fig.5 and Fig.6, we derive that the mismatched K-detector
suffers from lower losses than the Gaussian one.

4. CONCLUSIONS

In the present paper two different approaches to the
detection of signals with unknown parameters against a
mixture of K-distributed and Gaussian disturbance have been
considered. It should be noted that the analysis herein includes
the effects of receiver thermal noise. The first approach is
based on the generalised likelihood ratio test, the second on the
Neyman-Pearson test. A mixed numeric-Monte Carlo
simulation method has been employed to evaluate the ROCs
of the optimum detector and of mismatched detectors.
Moreover the detection gain of the processors introduced in
this paper, with respect to the detectors matched either only to
Gaussian distributed clutter or only to X-distributed clutter,
has been derived. Finally, it is worth observing that the
detection schemes (2) and (4) are not simple to implement:
they involve a heavy numerical integration with respect to the
texture variable 7. Besides they strongly depend on the
parameters V and [ of the texture distribution and on the
correlation structure of the clutter. So no predetermined
threshold can be assigned to achieve a given P, if they are
unknown. In order to overcome these drawbacks, in [7] a
linear-quadratic distribution-free detector has been proposed,
that offers good performance when the clutter correlation is
known. For completely unknown clutter environment, an
adaptive detection algorithm, based on higher order statistics,
is derived in [8] and its performance analyzed. It would be
interesting to extend our analysis to the case of partially
correlated texture, according to the model proposed in [5]; this
problem is the focus of futurc research.
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