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Résumé

Dans cet article, on présente FIN (Fuzzy Inhibited Net-
work), une structure connexioniste nouvelle specialement
congue pour réaliser un partitionnement dynamique non-
supervisé. Le réseau résoud le probléme de partitionnement
en employant des mécanismes d’inhibition (compétition)
pour séparer les différentes classes, et un comportement col-
lectif (coopératif) pour les représenter. On applique FIN au
probleme de poursuite multi-cible, et on présente des simu-
lations qui permettent d’évaluer sa performance.

1. INTRODUCTION

Since the definition of fuzzy sets in the 60’s, several

fuzzy clustering techniques have been proposed in the

literature [6, 3, 4]. More recently, some authors have

combined this approach to clustering with the adap-

tive and distributed characteristics of neural networks

defining fuzzy /neural clustering architectures [7, 5, 2}.

Compared to existing fuzzy/neural clustering architec-

tures, the structure proposed in this paper, FIN, presents
a set of features that collectively make it more con-

venient in situations where classes present gradually

changing membership functions of arbitrary shapes with
considerable degree of overlapping.

To represent each class, FIN does not rely in the
definition of a single prototype, as the Fuzzy ART [2]
or Adaptive Fuzzy Leader Clustering {5] networks; in-
stead, each class is represented by a set of points that
collectively describe its variability, allowing in this way
membership functions of arbitrary shapes, and increas-
ing robustness against outliers.
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Abstract

In this paper we present FIN (Fuzzy Inhibited Network),
a novel connectionist structure specially designed to per-
form adaptive unsupervised clustering. The network solves
the clustering problem using fuzzy competitive (inhibitive)
mechanisms to separate distinct classes, and cooperative
(collective) behavior to represent each one. We apply FIN
to the multiple target tracking problem, presenting simula-
tions that demonstrate its performance.

The Fuzzy Min-Max netwerk [7] alse develops a dis-
tributed fuzzy representation of the classes membership
function; however, it is based on the definition of hard
boundaries for each class, and thus is not adequate for
situations where classes overlap.

FIN is based on an inhibition mechanism, such as [2]
and the Fuzzy Kohonen network of Bezdeck et al, but
contrary to these architectures, it’s inhibition structure
has itself a fuzzy interpretation, and is determined by
the geometry of the membership functions, which al-
lows a more appropriate behavior under class overlap-
ping. Its name reflects this distinctive feature.

In this paper we apply FIN to the problem of multi-
ple target tracking (RADAR). In this case, the limited
resolution of the observer may not be able to separate
close objects {targets) producing a single observation
that is related to both targets. We show that FIN al-
lows the update of elements assigned to more than one
class (target) by the same piece of data, maintaining
in this way track continuity during target crossings.
Since hard decisions are never made inside FIN, out-
liers only slightly and temporaryly deform the mem-
bership function of some classes by increasing its value
in some neighborhood. The fuzzy distributed represen-
tation that is maintained for each class absorbs in this
way sporadic erroneous information {outliers).
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The paper is organized as follows. In Section 2 we
present our fuzzy approach to unsupervised clustering.
In Section 3 we describe the network structure and up-
dating procedure. Finally, this structure is applied, in
Section 4, to the multiple target tracking problem. Re-
sults showing the behavior of the network for realistic
radar scenarios are shown, under situations of strong
noise, high probability of false alarm, and low probabil-
ity of detection, that demonstrate the capability of FIN
to maintain track continuity under target crossings in
adverse conditions.

2. FUZZY UNSUPERVISED CLUSTERING

The clustering problem is to define, from a set of data
points, a partition P that agregates subsets of these
points as having a set of common characteristics, i.c.
as belonging to the same class. In problems of dynami-
cal clustering like the one we address here, the temporal
evolution of the features of each class may itself be an
important factor in partitioning the data. We assume,
consequently, that the input space J (where the input
data y takes values) and the clustering space W (where
the membership functions are defined) are not neces-
saryly the same. This means that we will be searching
not only for an ezplanation of the isolated data points
themselves, but rather for dynamical models for the
observed (or infered) set of trajectories.

We assume (which is equivalent to the definition
of a dynamical representation) that there is a known
one-to-one map ®(-) from W to Y:

o: W — Y
w — y=d(w)
We also admit that a known injective restriction of

® is known, and denote it by &7 1:

W,

y — w=937(y)

@;1 :

y —

In fuzzy approaches to clustering problems, the so-
lution to the clustering problem, i.e., the partition men-
tioned above, is equivalent to the definition of a set of
fuzzy sets,

P= {él’éz>""éx}
each one being defined by a membership function
HAi W — [071]
wo o pg i(w)

The set of membership functions {x;}5, ! defines a

1In the following, we will use the short representation y; for
the membership function defining the fuzzy set A ;

vector field g over W that is the fuzzy solution of the
clustering problem.

Based on this vector field, we define two other quan-
tities relevant for our solution of the adaptive clustering
problem: the network evidence, which is a vector field
defined over the input space Y, and a compatibility re-
lotion between the elements of the clustering space W.

The network evidence is an extrapolation of the
membership vector g into the input space. For each
set A (each component of the membership field), we

define the network evidence for association of point y
in W to that set as the logical value of the proposition
“y 1s close to a good prototype of the set A”:

Evida(y) = maxmin[d(y, ®(w)), pa(w)]

where 0 < d(+,-) < 1is a fuzzy normalized distance in Y
(linguistic variable “close t0”), which precise definition
depends on the application.

Besides the network evidence, we define a compat-
ihility relation between the elements of the clustering
space, R(w, ws) that measures to which degree points
wy and wy are members of the same fuzzy set(s). We
define this relation as the truth value of the proposition
“for all sets, if w; is an element of A then ws is also
a member of A,” which results in the following math-
ematical expression in terms of the membership field

e
pr(wi,we) = 1 — m/?x max (0, pa(wy) — pa(ws))

From this definition, we see that pr(wi,we) ~ 1 if
and only if ws is a good representation of all the sets
for which w; is a good prototype. We note that this
compatibility relation is not symmetric, meaning that
a point wy may be compatible with another point w;
(if it is has high membership for all sets for which w;
has) and at the same time w; not be compatible with
wy (meaning that for at least one set A* of which w;
is a member, pq+(wy) = 0).

These two quantities, both dependent on the vector
field p, form the basis for our clustering procedure as
will be explained next.

The goal of the dynamical clustering procedure is
to gradually increase the membership field in the re-
gions of the clustering space that are systematically
observed. Assume that such a membership field, of
dimension K, has been defined. For each data point
y presented at time £, the network evidence expresses
the possibility of assigning v to each fuzzy partition A,

Consider now each data point y. If Evid 4 (y) is very

small for all sets, then the dimension of the member-

ship field is increased, by adding a new element A K41



corresponding to the creation of a new fuzzy set. On
the contrary, if for at least one set A this evidence

is high, then there will be neighborhoods Wi(y) C W
such that Yw € W;(y), p(w) is high. In this case, y
is associated to A, by letting p.(w) increase in the

neighborhoods W;.

3. FIN ARCHITECTURE

FIN consists of a single layer of identical inter-connected
(by an inhibition matrix C) elements, with the input
data being distributed to all nodes.

Each node n of the network is associated to a point
in clustering space, w, € W. In this way, the network
defines a dynamic grid over the clustering space W.

The strength of the inhibitive connection between
two nodes depends on their compatibility, as measured
by the relation R defined in the previous section. Let
n and m be two generic nodes. Then the value of the

inhibitive connection from node m to node n is given
by

Cn.,m = "‘Hﬁ(wn)wm)
= —max max (0, pa(wr) — pa(ws))

We can thus see that C),  is always negative, with
small absolute values if n and m are members of the
same classes — meaning that they can become active
for the same input— while nodes that belong to distinct
classes strongly inhibit each other.

For each new data vector, y, the network does one of
two distinct functions: resizing of the network: corre-
sponding to the detection of a new class, not compatible
with existing ones; updating of exisiing nodes, where a
subset of network nodes is updated in response to the
observed data.

Resizing of the network is done whenever the cur-
rent input vector y cannot be assigned to one of the ex-
isting classes with sufficient confidence, i.e., whenever
Evida(y) is small for all A. In this case a new class is
created, by adding a cluster of nodes to the network in
a neighborhood of ®;'(y), new elements being taken
as representatives of the new class.

Update of existing nodes corresponds to normal op-
eration of the network, and is described by a set of dif-
ferential equations, that implement the cooperative/-
inhibitive mechanisms previously mentioned, meaning
that only a subset of the network node will actually
respond to the input data.

At each node, an auxiliar short term variable is
defined, a, the activation level of the node. At each
presentation, this variables are set to a small negative
value (constant accross the network). From this initial

Tury

assignement, its evolution is described by the following
equation:

dan
% = _an+g(an)+En+On
E, = min(d(y,®(wn)), mazip.(w,)) >0

On = ming (Cpmam) <0

where the term FE, measures the driving force of the
input plot for node n, and O,, measures the inhibition
of other nodes.

When a node becomes active (a, > 0), its state is
allowed to change, updating its position in W, as well
as its membership values.

Membership updating is a balance between the gen-
eral decaying of membership values whenever nodes do
not become active (meaning that the classes they repre-
sented are not present in the input data) and reinforce-
ment of membership for the classes of largest evidence
when a node becomes active.

All network variables are updated during this phase,
including the values of the connection matrix, as a con-
sequence of the variation of the membership field. We
are able to maintain inhibitive weights that vary grad-
nally in the interval [0, 1] and are consistent with the
instantaneous value of the membership field p.

FIN can be considered as a generalization of other
inhibitive networks, for which the connection matrix C
1s fixed. In FIN, the inhibition weights are a function
of the classes to which the nodes belong, and are de-
termined by the past trajectories of the corresponding
nodes, 1.e., the connection matrix is also part of the
memory of the network.

As a result of network evolution for each input, two
outputs are produced: the identity (class) of the data,
obtained by findihg the class that shows a larger net-
work evidence ofr the current input, and an estimate
of the best prototype of that class, corresponding to the
position of the best representative of that class.

4. MULTIPLE TARGET TRACKING

For the tracking problem, ) is usually 2 or 3 dimen-
sional, representing the position of the target, while
W has increased dimension, including components for
velocity and, possibly, acceleration. In the simulation
presented below, we considered a simple linear uniform
model for target motion, and observations in the hori-
zontal plane, meaning that the clustering space is four
dimensional, with two components (w,wy) for posi-
tion, and two components (w5, wy) for velocity.
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The fuzzy measure of compatibility between the ob-
served plots and the network nodes is based on the Eu-
cliean distance between the plot y and the predicted
position at the observation time

| Wz + Agtiy
2w) = [ Wy + Aty } '

where A, is the interval of time since last update of
node n. For node n, d(y, ®(wy)) is, according to the
assurmed motion model, given by:

1, lly—ew)ll <~

d , W = [
(wwn) { (o) + Ny = 2wl >
where v and @ are network parameters. State updating
is done using the estimate of simple o — 3 filters [1].

To illustrate the performance of FIN, we applied it
to simulated data. The case of two closed targets per-
forming two crossings and with trajectories that are
close to each other during a considerable period has
been considered. The observations were simulated di-
rectly in range and bearing, and conversion to rectan-
gular coordinates was performed prior to the presenta-
tion of the plots to the network.

Figure 1 illustrates FIN’s ability to track the two
closed targets, maintaining a good representation un-
der crossings.
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Figure 1: Detected targets.

We see that no false tracks have been formed, the
network having successfully absorbed all false alarms.

While the track initially (at the bottom of the figure) at
the left is maintained during most of the trajectory), a
number of distinct hypothesis for the other less well de-
fined track have been propagated by the network. Most
often, these tracks have been recognised as alternative
representations of the same target, which is evidenced
by track merging. Notice that track individuality is
maintained even during the long period where the two
trajectories are close to each other, and in particular
during the two crossings.
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