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RESUME

Dans cet article on considére la détection & Taux
de Fausse Alarm Constant (TFAC) d'un cible noyé dans
un bruit impulsionel non Gaussien. Un nouveau simple
détecteur TFAC avec une intégration incohérente est
presenté, Ce détecteur, malgré 1'estimation d'un seul
patamétre, présente une probabilité de fausse alarme
peu variable lorsque le fouillis est trés impulsionel.
L'algorithme est analysé avec un modéle du bruit de
Weibull. Les pertes TFAC sont proches a celles des
détecteurs avec un seul paramétre, et elle sont moins de
celles des systémes qui estiment deux paramétres. Ainsi
le détecteur robuste représente une amélioration des
detecteurs classiques qui dégradent intolérablement dans
un fouillis non Gaussien, et une alternative aux systémes
TFAC avec deux paramétres ou non parameétriques, qui
sont complexes et qui ont beaucoup de pertes.

1. INTRODUCTION

The radar clutter amplitude probability density
function (pdf) may largely deviate from Rayleigh in
high-resolution and low grazing angle situations
(long-tailed or "spiky" clutter). The Weibull family of
pdfs, characterized by two parameters (scale and
shape), is very often assumed to encompass such
situations [1]. Conventional monoparametric CFAR
procedures (CA-, OS-, GO-CFAR) degrade intolerably
as the Rayleigh distribution assumption is violated [2],
[3]. It can be seen (Fig.1) that also conventional CFAR
detectors with postdetection integration [4] suffer
essentially the same degradation.

We propose and analyse a new and simple
monoparametric CFAR algorithm with postdetection
integration that guarantees robustness to deviations
from the Rayleigh distribution. The robustness of the
false alarm probability (P;,) is obtained by a joint
action: the effect of the specific choice of the clutter
parameter to be estimated, namely the root mean square
(RMS) clutter value, in conjunction with the effect of the
integration itself. This proposal is based on the
observation of an interesting behaviour of conventional
monoparametric CFAR detectors (Fig.1): for very high
nominal P,,, about 107, the P;, increases slightly in
spiky clutter, or it can even decrease [1]. This happens
because at constant clutter level, when the clutter
becomes spiky, the pdf exhibits a lengthening of the
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tail but it accumulates close to the ordinate axis; so
nearby a particular threshold value, the false alarm
rate (FAR) is slightly sensitive to the shape parameter.
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Fig.1 - P;, vs. threshold coefficient ¢ for the CA-CFAR
(N =10 pulses integrated, K — oo reference cells)

Our goal is to extend this robust behaviour to P,
values of practical interest, making use of the above
mentioned effect to derive a robust monoparametric
CFAR algorithm. We can use a threshold that depends
on the clutter RMS value, and a N-pulse linear
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postdetection integrator. Then when the clutter becomes
spiky (decreasing Weibull shape parameter), at equal
clutter power and consequently constant threshold, the
pdf at the output of the integrator (approximately
Gaussian) increases in variance but decreases in mean
value. Thus, the pdf widens but shifts leftward with
respect to the threshold, so a compensation effect arises
which results in P, values of practical interest almost
insensitive to changes of the shape parameter. This
effect can also be enhanced employing a log integrator,
since the log non-linearity tends to smooth the tail of
the clutter distribution and to decrease its mean value.
In this paper we focus on the robust CFAR detector with
logarithmic integrator.

We give the mathematical derivation of the robust
algorithm, and we perform an approximate robustness
analysis by calculation; a thorough assessment of the
robustness performance is carried out via Monte Carlo
simulation. Design criteria to achieve a specified
robustness degree are given, too. Finally we determine
detection performance and CFAR loss; a comparison is
carried out with the classical CA- and Log/CA-CFAR
systems [4], and with a biparametric CFAR detector for
Weibull clutter, based on the joint maximum likelihood
(ML) estimation of both the shape and scale parameters
[5] and optimized binary integration [6).

2. THE ROBUST THRESHOLDING TECHNIQUE

The output w20 of the envelope detector driving
the CFAR device is assumed to be Weibull distributed.
The Weibull pdf is [1}:

pw(w)= %(%’-)C_I eXP[—(%)C] ¢y

where B>(0 and C>0 are the scale and shape
parameters; it includes the Rayleigh pdf as the special
case C=2. Lower values of C indicate "spiky" clutter.
The mean clutter power P, that equals the squared RMS
value, is [5]:

P= Bzr(%+ 1) = RMS? @)

where I'(.) is the Gamma function. We assume that the
thermal noise level is sufficiently low, relative to the
clutter power, to be neglected.

We take into account N postdetection integrated
"pulses” in azimuth and K range reference cells,
resulting in K*N reference observations. The term
"pulses” refers here to true pulses or to samples resulting
from batch coherently processed bursts of pulses. We
assume for the sake of simplicity independent and
identically distributed (iid) Weibull samples.

Consider the limiting situation with infinite K
and high N, and assume that the estimator for the
clutter level is consistent (zero bias and variance). After
the log amplifier the Weibull variate is transformed in

a Gumbel variate [2]:
U ; a)exp{— exp(u ; aj:l 3)

folt)=Texe(

where —oo < 1 < o0, and

a=InB, b=1/C @)
are called location and scale parameters. The mean

value and variance of the Gumbel variate are:

7[2

Ng=a—7 and oé=?b2 ®)

where y = (0.577 is the Euler's constant. Substituting (4)
into (5) and eliminating B by means of eq. (2) we get:

1 2 1 r 1
Ne = ln(RMS)—Eln[I“(C +1j:l rG %% “TEC
Assuming an integration gain I/N, and approximating
the pdf at the log integrator output with a Gaussian [4]
(central limit theorem), we obtain for the false alarm
probability:

(6)

e R a C I

={T—ln(RMS)+%lnl:F(%+1H+%}@— 7b)

where Q(x TEJ' exp -y /Z)dy, T is the detection

threshold at the integrator output, and RMS is the root
mean square clutter value. Then, by setting the adaptive
threshold according to:

T = g+In(RMS) ®)
where g is a threshold coefficient and RMS is the

perfectly estimated RMS clutter value, the argument of
the Q function does not depend on RMS any more:

={g+%1n[ (éuﬂ C}CW )

so P;, is independent of the mean clutter level, and the
algorithm is CFAR for a fixed shape parameter C (the
threshold coefficient ¢ determines the P,).

In the practical situation of finite K, we employ a
sample root mean square estimator (which is consistent).
The threshold becomes:

" N
=g+ln(RMS) g+]n‘{-——-i2w,§ (10)
)=1 i=1

where RMS is the estimated RMS, and w; are the
total K*N samples from the reference cells, with j and
i range and azimuth indexes. The false alarm
probability is now given by:

P=[ p.(z J' p,(v)dvdz 11)

where p,(v) is the pdf at the log integrator output, and

p,(z) is the pdf of random variable T'. These pdfs can
be expressed by means of a characteristic function
approach. After some manipulations, it can be proved
that the value of P;, (11) does not depend on the mean
clutter power, hence the proposed algorithm is still
CFAR, for a fixed C, with a finite K value. In the proof
the assumption of Gaussian approximation at the
integrator output is removed: the result is valid for any
N. The proposed monoparametric detection scheme is
depicted in Fig.2.
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Fig.2 - Robust monoparametric CFAR detector

3. ANALYSIS OF ROBUSTNESS

We now analyse the approximate expression (7a, 9)
obtained for P;,, looking for compensation conditions: as
an example we impose the same P, = 107 for C=2
and C=1, and verify that for 1<C<2 P, does not
change significantly. It is worth noting that this range
of C comprehends most of the situations of practical
interest. The previous condition yields, independently
of N: g=(In2)/2=0.347. For P;, =10, substituting
g=0.347 and, say, C =2 in the expression for P;,, we
get N =18 . It can also be verified that the maximum
P., within the interval Ce[l,2] is P, =2.2-10".
Thus under the Gaussian approximation the system,
with N =18, K- and a nominal P, =10" in
Rayleigh clutter, maintains practically the same P,
when C moves to C =1. It can be shown that similar
robustness conditions occur at higher or lower values of
P,,, respectively with lower and higher N.

We could not find a closed form expression for P,
when K is finite or N low. To analyse exactly the Pp,
robustness, a data set was built, via Monte Carlo
simulation (10° trials), as a table of values of Pp,
versus ¢, C and N, for K=10 and K— . Some
results are reported in Fig.3, that shows P, versus the
threshold coefficient g and C,for N =10, K— .
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Fig.3 - P, vs. g for the robust system (N =10, K— o)

It results that if the nominal P, is designed to be, say,
107 for C =2, a very slight maximum FAR increment
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factor (=3) occurs when C moves to C=1. The
intolerable FAR inflation that the classical multipulse
CA-CFAR detector exhibits in the same conditions is
evident from Fig.1 (=1400). A similar dramatic
inflation stands for the multipulse Log/CA-CFAR.

1t is useful, also for design purpose, to plot on the
" N- nominal P.," plane the curves corresponding to
various robustness degrees, for a given range of C.
Following [3] we characterize the robustness by means of
the maximum FAR inflation:

R (o

CelCain Coml P, (Cm )
where C,,,, is the nominal shape parameter, say
C,.n =2, C.,. is the lowest expected C, and of course
P,,(C) is evaluated for the same g used to set the

(12)

nominal false alarm probability PM(CW). The closer
to 1is 7, the higher the robustness. These curves have
been obtained by a data reduction program from the

complete data set PM( ¢,C,N). Fig4 shows graphs for
Cel1,2), K=10, y=4,8, and 16.
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Fig4 - Curves at constant ¥ on the " N - nominal Py, "
plane (C e[1,2], K=10)

The curve marked "comp" corresponds to a perfect
compensation at the extreme points of the range of C; if
the point (nominal P;,, N) is above this curve the P,
can be lower than the nominal one, when C=1 (see
Fig.3). It can be seen that operating with N =10, for a
nominal P;, from 7-10° to 3-107, it is guaranteed
that the actual P, for C€[1,2] never increases more
than 8 times neither decreases with respect to the
nominal one. Notice that 7 =8 for P,, =7-107° relates
to a very good robustness; the classical CA- and
Log/CA-CFAR exhibit respectively y=2100 and
¥ = 3300 in the same conditions. Moreover, if we want

a nominal P;, =10 that never decreases, neither

increases more than 8 times for C €[1,2], the system
should be designed with N from 10 to 15.
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4. DETECTION PERFORMANCE

The detection performance has been compared to
that of the classical Log/CA-CFAR system [4]. As a
further comparison, we have evaluated the
performance of a system with a ML estimator of both
the clutter parameters [5] and binary integration [6].
This system exhibits a perfectly constant P;,, while
the robust procedure guarantees that the variations of
P;, for changing shape parameter are small. In order to
get a meaningful comparison, the threshold coefficient
has been adjusted when necessary to keep the P,, fixed.
Detection performance has been evaluated for
Swerling II target, by means of Monte Carlo simulation.
We show results in terms of the mean signal-to-clutter
power ratio per pulse (SCR) [5] necessary to get a
detection probability P, =0.9 with P,, =107, for
various C and N,and K =10 (Fig.5).

We have evaluated also the CFAR loss (Fig.6),
that is the ratio between the SCR required to achieve a
specified P, and P;,, and the SCR required in the case
K — oo, i.e. exactly-known clutter level. For K —eo,
the robust detector performance is, of course, the same as
every system employing log integration (very good in
spiky clutter [1]).

It can be seen that the robust detector
("Rob.Detector") outperforms both the comparison
systems ("Log/CA", "ML+Bin"). It exhibits better
detection performance than the Log/CA-CFAR
detector, that is affected by a well-known high CFAR
loss [4]. More interestingly, it outperforms (of 1.1+ 3.5
dB) the biparametric CFAR system. For C=1 this is
due in part to the different integrators employed (log
integration outperforms binary integration of about 2
dB). The rest of the performance difference is due to the
low CFAR loss that we have achieved in conjunction
with robustness.

In fact, the CFAR loss of the robust detector is near
(within 0.2 dB) to that of a CA-CFAR detector,
moreover it is smaller than that of the biparametric
system. This happens because the adaptive threshold
of the robust detector is based on the estimate of only
one parameter and hence exhibits a lower variance.
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5. CONCLUSIONS

We have shown that when postdetection
integration is employed a very good CFAR behaviour
can be obtained for a two-parameter distribution with
variable skewness, by means of a new single-parameter
CFAR procedure. A comparison with conventional
CFAR systems, failing in spiky clutter [2], has been
made. The robust algorithm guarantees that the
variations of P,, for changing shape parameter are
small and can be bounded by a suitable design procedure;
this can satisfactorily meet practical applications
requirements. The algorithm is simple and robustness
has been achieved in conjunction with low CFAR loss.
The proposed algorithm represents an upgrade of the
classical CA-CFAR detectors and an alternative to
biparametric or non-parametric CFAR systems, that are
affected by high complexity [5] and losses [4].
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