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RESUME

Il faut souvent utiliser une grande taille de données ou de

coefficients pour les filtres d’ordre élevé, réalisés avec une
structure conventionnel. Il a été démontré que nouvelles
structures hybrides sont largement meilleures a cet égard.

Cet article présente une nouvelle procédure d’allocation
des pdles pour la synthése des filtres d’ordre élevé. Nous
allons montrer que cette procédure est une étape clé du
processus de synthése de ces filtres pour avoir des coeffi-
cients au numérateur de taille minimale. L’exemple donné
révele 'ampleur des amélioration possibles.

1 INTRODUCTION

It is usual to implement a recursive digital filter as an
interconnection of first and second order sections. This is
primarily done to minimise the sensitivity of the filter to co-
efficient quantisation. Normally the sections are connected
either in cascade or in parallel. The cascade and parallel
filter structures work well for low order filters (eg less than
14th). However for higher orders, the use of extremely large
data or coeflicient wordlengths becomes necessary.

New hybrid filter structures [1, 2}, have been devised to
overcome these practical difficulties with implementing high
order recursive filters. The advantage of the new structures
is that they can be used to minimise the excessive data
and coefficient wordlengths required for high order recursive
filter realisations. The trade-off for this is an increase in the
computational complexity in the synthesis of such filters.

The concept behind the hybrid filter structures is to par-
tition a high order recursive filter into lower order subfilters
which are easier to realise. The overall filter is formed by
connecting the subfilters together in cascade or in parallel.
Since each subfilter consists of more than one section, there
are many ways in which the poles of the filter transfer func-
tion can be allocated to the subfilters. We have found that
the required data and coefficient wordlengths for a filter im-
plementation are largely dependant on the pole allocation
arrangement used.

There are two classes of the hybrid filter structures:
*Cascade Interconnected Subfilters’; and ’Parallel Intercon-
nected Subfilters’. This paper examines how high order
‘Parallel Interconnected Subfilters’ (PIS) class filters with
minimum coefficient wordlengths can be synthesised.

ABSTRACT

Realisations of high order filters using conventional filter
structures often require excessive wordlengths, either for
the coefficients or for the data. New hybrid structures have
been shown to be considerabley better in these respects.

This paper introduces a new pole allocation procedure
for synthesising high order recursive filters with hybrid
structures. This is shown to be a key stage of the synthesis
process for obtaining hybrid structure high order filter real-
isations with minimum numerator coefficient wordlengths.
An example is given which indicates the extent of the im-
provement over conventional structures.

2 PIS STRUCTURES

The general form of all PIS class hybrid structures is
illustrated in figure 1. Each structure in this class consists
of low order subfilters that are connected in parallel to give
the required filter transfer function. The subfilters can be
realised with any classical structure - parallel form, cascade
form, and lattice are good examples. So the synthesis pro-
cess is effectively broken down into two stages:

(i) Partition the filter transfer function into subfilters,
(ii) Synthesise the subfilters using conventional methods.

Since stage (i) is based on well established methods, we
are only concerned with stage (1) here.

The filter is partitioned into subfilters by obtaining an
incomplete partial fraction decomposition of the filter trans-
fer function, thus:

He =20 = Y B (2.1)

where F = number of subfilters and ¢}(z) are known real
factors of ¢(z), with degrees n; > 2.

Efficient methods for obtaining this decomposition,
based on an algorithm due to Shamash [3}, were identified
by Sandler {1]. Enhancements to these algorithms are still
under development [4, 5]. '

3 COEFFICIENT WORDLENGTHS

Parallel form realisations of high order filters frequently
require excessive numerator coefficient wordlengths, be-
cause they often have a large range of numerator coeffi-
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cient magnitudes. It also necessitates the use of longer
data wordlengths in order to maintain the original dynamic
range of the data. This problem can also occur with PIS
structures if the poles are not allocated appropriately.

The ‘frequency spacing’ procedure for allocating poles to
subfilters was proposed in [1], which maximises frequency
spread of the poles in each subfilter. The aim of this was
to maximise the signal to quantisation noise ratio in PIS
realisations of high order recursive filters, at a given data
wordlength. Results show that this procedure often ylelds
lower ranges of numerator coefficient magnitudes in PIS re-
alisations than in parallel form realisations. However, it
does not usually give PIS realisations with minimun co-
efficient magnitude ranges.

As a way of measuring the range of coefficient magni-
tudes, we define the range factor ¢ as:

largestmagnitude

~ smallestmagnitude (3.1)

For any given filter, the pole allocation arrangement that
yields the realisation with the minimum range factor cannot
yet be predicted. Hence, in order to obtain the optimum
realisation in this sense, each possible partition must be
synthesised. The optimum realisation can then be selected
from the set.

This process requires a very large number of synthesis
iterations. The exact number for any given order depends
on the nature of the structure, but for example, a PIS struc-
ture with subfilters of equal order requires

ORDER];
< !

—?T§5F~ (3.2)

Iterations =
iterations, assuming the filter ORDER is even, and where:
F = number of subfilters; and S = order of subfilters.

Given that we are interested in filter orders in excess of
100, this number of iterations is phenonomal. However, by
appealing to the relevent theory, some of the partitions can
be predicted as being non-optimum, and can therefore be
excluded from the process.

4 THEORY

The relationship between PIS class structures and the
parallel form gives insight into how some of the non-
optimum pole arrangements can be predicted.

Assume that the recursive (pole/zero) filter transfer
function is of the form

(4.1)

where

n
a(2) = ][ () (4.2)
y=1
g4(z) are the lowest order factors of q(z) with only real
coefficients - ie real poles and complex conjugate pairs of
poles,
and u(z) is a polynomial in z which represents the zeros of
the filter.
The parallel equivalent transfer function is given as
n p
— ()
=1

H(z) = po(z) + (4.3)

where the order of each p,(z) is one less than that of the
corresponding ¢(2) (for v > 0),

and po{z) only exists if the order of u(z) is not less than
the order of ¢(z).

The subfilter transfer functions of an equivalent PIS
class filter can be formed by cross-multiplying groups of
terms in the summation of equation (4.3) - although we
would not do this in practice because it generates large er-
rors. Each subfilter denominator g¢},(z) consists of groups of
gy(z) such that

L+i—1

@)= ] «) (4.4)

where L =number of complex pairs and real poles in the
subfilters for £ =0,1,...,F— 1, and i = ZZ:O L.

Each subfilter numerator pj (z) consists of a linear com-
bination of p,(z) and ¢(2), thus

Li+i—1
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Dy 'k
Bk () (4.5)
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With this relationship, some of the non-optimum pole
arrangements for any given filter can be identified from the
parallel form transfer function (4.3). These arrangenments
are summarised as follows.

e When all, or nearly all of the ¢,(2z) whose p(z) have the
largest coefficient magnitudes are in the same subfilter.

o When all, or nearly all of the ¢,(z) whose py(z) have the
smallest coefficient magnitudes are in the same subfilter.

Hence, if we obtain the parallel form equivalent transfer
function prior to synthesis, the optimisation process can be
reduced accordingly.

For example, if a given PIS structure has say, two 12th
order subfilters - ie six sections each - then no subfilter
should have more than three of the ¢,(z), whose correspond-
ing py(z) have the largest coefficient magnitudes allocated
to the same subfilter. Similarly for the ¢,(z) whose corre-
sponding p,(z) have the smallest coefficient magnitudes. A
combinatorial analysis [6] of this scenario rules out a total
of 50 out of the 461 non-optimum partition arrangements.

The combinatorial analysis becomes much more involved
as we increase the complexity and order of filter structures.
However, for filter orders upto 50 we would normally expect
to rule out about 10 per cent of the total number of possible
partitions.

5 PROCEDURE

The ‘frequency spacing’ allocation procedure does not
usually yield realisations with the minimum range factor
®. However, the range factors are often sufficiently small
In these cases, the optimisation process can be bypassed
altogether. Thus, a suitable allocation procedure 1s as fol-
lows.

(i) The filter transfer function is specified with w(z) fully
expanded and ¢(z) as the list of ¢4(z).

(i1) Decide on the number of subfilters that the resultant
PIS structure filter will have - based on the filter order.
(1i1) Synthesise the PIS structure filter using the *frequency
spacing’ allocation procedure. If the range factor & 1s too
large then continue. Otherwise finish.



(iv) Compute the parallel equivalent transfer function
(equation 4.3).

(v) Determine which arrangements are guaranteed to be no
good from the parallel form transfer function.

(vi) Synthesise the rest of the partitions, and select the best.

6 EXAMPLE

The above procedure was tested with a variety of ‘syn-
thetic’ and ‘real-life’ filters with orders ranging from 16 to
48. We have used one of these filters for the following ex-
ample. The filter was generated using musical instrument
analysis/synthesis software [7]. It is a reduced order ver-
sion of one of a sequence of filters which collectively form a
model of a tom-tom drum.

The filter is all-pole - ie u(z) = 1 - and the ¢,(z) are
given as:
q1(z) = (1.0 — 1.965699271 + 0.96694422);
g2(2) = (1.0 — 1.962799z~1 4+ 0.966944z~2);
g3(2) = (1.0 — 1.942954271 4+ 0.9669442~2);
ga(z) = (1.0 — 1.83161721 + 09696772 2);
qs(z) = (1.0 — 15159922~ + 0.9669442~2);

gs(z) = (1.0 — 0.9416782"1 + 0.975156272);
g7(z) = (1.0 + 0.0148952~1 4+ 0.98616022);
gs(z) = (1.0 + 1.981327z1 + 0.9834032~2).
A z plane diagram of the filter 1s illustrated in figure 2.

The PIS structure filter was chosen to have 2 subfilters,
each with an order 8. Hence for this example, the total
number of partitions is:

8!

Sy = 9 (6.1)

Since this is a relatively small amount of partitions, the full
unreduced optimisation process was performed in the first
instance, so that all of the realisations could be observed.
The reduced optimisation process excluded 8 partitions.

The numerators of the parallel equivalent p,(2), were
computed as:

p1(2) = (212916.83 — 183790.67z71);
pa(z) = (—244362.06 + 212536.99271);
pa(z) = (31518.370 — 29029.214z71);
pa(z) = (=60.519375 + 266.93855271);
ps(z) = (—11.144283 + 16.038683:"1);
pe(z) = (—0.4768660 4 0.6411380z~1);
p7(z) = (0.00282510 + 0.02304710z~1);
ps(z) = (0.00160873 + 0.001402462~1).

The worst pole allocation arrangement was:
1(2) = q1 - 92 94 - a5(2); ¢5(2) = a3 - 45 - 97 - ¢8(2),

with numerators:

pi(z) = (—31516.668 4+ 197117.252~1 — 543344.682~2
+856993.54273 — 835755.282~* 4+ 503782.402~5
—173589.4327° 4 26317.9202~7);

ph(2) = (31517.668 + 4208.91962~ + 3882.66332~2
+32295.881273 — 25425.227274 4 790.4203025
+591.078702~% — 27452.07942~ 7).

The best pole allocation arrangement was:
01(2) = 1 - g2 - g4 - 48(2); 95(2) = g3 - g5 - 46+ g7(2),

with numerators:

1U10

p)(z) = (—31505.751 + 86852.8212~! — 21553.6652 2
—1492375.56273 + 132745.972~* + 29737.8132~°
—80608.5602~° + 26751.3462~7);

ph(2) = (31506.751 — 105971.172* + 206943.252~2
—275340.04273 + 271433.262~% — 196503.21275
+97230.68327¢ — 26977.911277).

The ’frequency spacing® allocation procedure arrangement
was!
¢1(2) = q1- g3 g5 - 97(2); ¢2(2) = g2 - 44 - g6 - 48(2),

with numerators:

p)(2) = (244424.05 — 1055324.52~1 + 2155715.1z~2
—2873085.3273 + 2816970.1z7% — 2016774.82~3
+924922.43276 — 196213.7027);

ph(z) = (~244423.05 + 406388.15271 + 37186.929272
—629941.02273 4 586477.222~* 4+ 21932.780z 5
—393505.8127% + 197884.882~7).

The numerator coefficients are quite diverse from one ar-
rangement to the next. The best arrangement had a range
factor @, of 12.77 - a significant improvement on the range
factor of about 174240080 for the parallel form. The ‘fre-
quency spacing’ partition falls somewhere between the op-
timum and the worst in this example, having a range factor
of 130.99.

Even the worst arrangement for this example was quite
an improvement on the parallel form, having a range factor
of 1449.88. However, this is quite a low order filter. As we
progress to higher order filters, the diversity becomes more
extreme and hence more of a problem.

7 OTHER CONSIDERATIONS

The next stage of the research will investigate the effects
of pole allocation on filter performance. The performance
of the implementation of the best of the three arrangements
given in the example, compared very favourably, having a
lower frequency response error than the other two arrange-
ments. Also, as expected, its SQNR was not quite as high
as the SQNR. of the ’frequency spacing’ arrangement, but
was higher than the SQNR of the worst partition arrange-
ment. Since the example filter is the only one that has been
tested at present, the results are inconclusive. It 1s antici-
pated that more conclusive results on performances will be
obtained in the near future,

8 CONCLUSIONS

Large ranges of numerator coefficient magnitudes often
occur in paralle] form realisations of high order filters, fore-
ing the use of excessive coefficent wordlengths in their im-
plementation. The PIS filter structures are a class of hy-
brid filter structures which were devised to overcome both
this problem and also the requirement for excessive data
wordlengths experienced in cascade form realisations. How-
ever, care must be taken over the allocation of poles within
the structures for them to be effective in these respects.

The pole arrangement yielding the minimum numera-
tor coefficient magnitude range cannot yet be predicted for
any given filter. However, certain non-optimum pole ar-
rangements can be predicted for a filter, by referring to
the parallel form equivalent realisation. Hence the iterative
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synthesis process, which synthesises the realisation with the
minimum coefficient magnitude range for any given filter,
can be reduced accordingly.

Future work involves the comparative examination of
filter performance, in terms of frequency response error and
SQNR, for a variety of examples of high order recursive
filters.
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Figure 1: General Form of the PIS Category Structure
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Figure 2: Z Plane Diagram of Example Filter.



