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RESUME

Dans le contexte du codage vidéo comme dans celui
de DUanalyse de séquences d’images, Uestimation du mo-
woement présent dans la scéne est primordial. Parmi
U'ensemble de techniques d’estimation de mouvement, la
technique d’appariement s’est monirée la plus performante.
Néanmoins, clle est trés demandante en du point de vue
de caleul. Dans cel article, une technique pour l'estima-
tion de mouvement par appariement est préseniée. Elle
est hasée sur un algorithme génélique appliqué & un espace
continn.  Faisant partie de la classe de techniques d’o-
plianisation stocastiques, elle est caractérisée par sa ro-
bustesse auwr mintina locauz, se capecité de comvergence
Tant en termes d’efficacité
machine qu'en cenr d’obtention de la solution optimale, les

et son dmpleniation facile,

résultals cxpérimentaur démontrent que la technigue pro-
posée est plus performante que les techniques usuelles de
recherche rapide.

1 Introduction

In video coding as well as in limage sequence analysis, the
estimation of the motion existing in the scene is fundamen-
tal. In the framework of video coding, such an information
permits to dramatically reduce the temporal redundancy.
As far as image sequence analysis is concerned, the esti-
mation of the motion information allows for a precise cha-
racterization of the moving objects present in the scene.
Spatio-temporal segmentation [1] as well as tracking of the
object of interest can then be carried out.

The motion existing in a scene has to be characterized
by a model. The latter can be chosen to be either non-
parametric. quasi-parametric or fully parametric [2]. The
parametric model tries to define the motion of a whole
region by a set of parameters while the other approaches
lead to a dense motion field. Due to its natural application
in the franmework of object-based motion estimation, this
paper assunies a parametric motion model.

In order to estimate the parameters of the motion mo-
del, two approaches have been investigated. The first
techniques rely on a dense motion field computed with a
non-parametric method. The motion parameters are then
estimated by linear regression [3]. As the motion para-
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meters are not computed from the luminance signal itself,
these techniques can be referred to as indirect. The se-
cond techniques directly estimate the parameters of the
motion model. Since the estimation is carried out on the
luminance signal itself, these techniques can be seen as di-
rect. However, the estimation problem turns out to be
non-linear. So as to linearize the latter, a first class of di-
rect techniques assume a model of the luminance signal.
They are referred to as differential techniques [2]. The al-
ternative approach is to use the matching technique which
directly solves the non-linear estimation problem without
any assumption on the luminance signal. The latter has
been shown to outperform both differential and regression
techniques when estimating the camera motion [4].

The motion estimation can be secen as an optimization
problem. The aim is indeed to find the set of parameters
which best captures the motion and hereby, minimizes an
evaluation function. In the case of matching motion esti-
mation techniques, the search for the parameters can either
be carried out stochastically or deterministically. A global
optimization is guaranteed only by an exhaustive determi-
nistic search in the motion parameters space. The latter
being continuous, such an exhaustive search is unrealistic.
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In order to robustly estimate the motion parameters
by matching motion estimation, the deterministic optimi-
zation methods arbitrarily quantize the motion parame-
ters space in series of discrete tentative parameters values
within a maximum displacement range. So as to reach pre-
¢ise estimates, the quantization should be quite fine leading
to a heavy computational load. However fine, the quanti-
zation process renders the obtaining of the optimal motion
parameters highly uncertain. To decrease the computa-
tional complexity, fast search techniques have been propo-
sed [5]. Amongst the latter, fast search techniques based
on a hierarchical representation of the image have been de-
veloped. Such hierarchical methods are very robust to local
minima. They nevertheless require fine tuning to achieve
good performances within a tolerable computational load.

In this paper, a Genetic Algorithm in the Continuous
Space for matching motion estimation is proposed. Be-
longing to the class of stochastic optimization procedures,
such optimization algorithms do not require any quantiza-
tion of the scarch space. They are moreover characterized
by a robustness to local minima and rapid convergence to
the optimal solution. The latter characteristics make them
perfectly suited to solve the optimization problem posed by
matching motion estimation. They allow for a better mo-
tion estimation while requiring less than half of the compu-
tational load of usual fast search methods. Furthermore,
little tuning is required.

The paper is structured as follows. In Sec. 2, the ge-
neral description of the Genetic Algorithms is given. The
proposed Genetic Algorithm in the Continuous Space for
matching motion estimation is presented in Sec. 3. Experi-
mental results are shown in Sec. 4 and Sec. 5 draws conclu-
S10118.

2 Genetic Algorithm

Genetic Algorithms (GA) are a class of robust stochastic
scarch and optimization procedures based on the Dar-
winian theory of evolution. Their basic principles were first
described by Holland, and their mathematical framework
as well as examples of application can be found in {6]. GAs
have been employed with success in a variety of problems
such as combinatorial optimization, system identification,
hmage enhancement, to name but a few. The lure of GAs in
these different contexts is that they do not require differen-
tiability or even continuity of the search space. Further-
more, they are robust to local minima and very easy to
nnplement.

A GA typically consists in a population of suitably en-
coded solutions to the problem at hand, together with an
evaluation function. In order to create successive genera-
tions of solutions, there is a need for operators which gene-
rate new solutions starting from the previous ones. These
operators mimic the biological phenomena of erossover and
mutation. The choice of the solutions upon which they are
used 1s dictated by the evolutionary principle of the survi-

val of the fittest. The selection is performed according to
the evaluation function.

In order to work in the GA framework, the solutions
have to be encoded in an appropriate manner. The most
common approach is to quantize the parameter values for-
ming a solution and to binarize them. The chain of all
these binary representations form an unique bit string cal-
led for obvious reasons a chromosome. Crossover generally
consists in building a new chromosome from two other ones
referred to as the parents. The operation is carried out by
concatenating randomly chosen parts of the parents. For
instance, if the two parent chromosomes are 11110011 and
01011010 and position five is drawn at random, then the
resulting chromosome will be 11110010, Mutation com-
monly consists in considering in turn each bit of a given
chromosome and changing its value with a predefined low
probability called the mutation rate. Although very widely
used, the above approach to solutions encoding suffers from
the following drawbacks:

1. The operators do not take into account any possible
link between different solution parameters. As the
crossover operation mixes these parameters in an ar-
bitrary way, convergence speed may be slowed down.

2. Quantization implies that the parameters are restri-
cted to some amplitude range.

3. The obtained solution is quantized. Improvement in
the accuracy implies additional bits in the chromo-
somes and hence a decrease in convergence speed.

So as to overcome the above drawbacks and constraints
of usual encoding, a GA working directly on the parameter
space is needed. In other words, the chromosomes should
no longer be series of bits but actual floating point ve-
ctors. As no quantization is needed, such type of GA will
be referred to as Genetic Algorithms in the Continuous
Space (GACS). The main idea consists in defining opera-
tors whose effects are similar to the ones of the operators
of classical GAs while avoiding the need for a quantization
and binarization of the solutions. Mutation must remain a
way to explore the search space and crossover must allow
to obtain chromosomes with better performances starting
from available well performing ones. In consequence, the
mutation operator is defined by:

b=d+q

where d, b and g are respectively the chromosome, the
mutated chromosome and a Gaussian distributed random
vector. The components of the random vector § must be
uncorrelated so as not to favor any particular direction in
the stochastic search. As far as their variances are con-
cerned, they play the same role as the mutation rate of
classical GAs. The crossover operator is given by:

b=(1-Xdi+Aad




where A is a random variable uniformly distributed on
the unit interval. The resulting chromosome b lies literally
in-between’ its parents d; and @3. In case constraints on
the solution induce the convexity of the search space, the
crossover operator generates an refined chromosome star-
ting from acceptable parents.

3 Matching Motion estimation

based on a GACS

Due to their intrinsic characteristics, GACSs are perfectly
suited to solve the optimization problem represented by
matching motion estimation. Moreover, the transcription
of motion estiiation in the framework of GACSs is readily
performed. A chromosome can be identified with the ve-
ctor formed by the parameters of the motion model. In
case of an affine motion model, the chromosome is thus
formed by the concatenation of the six continuous motion
parameters. The evaluation function is simply chosen to
be the Mean Square Error (MSE).

The GACSs property of not enforcing any discretiza-
tion of the scarch parameters space allows a more thorough
searcli. Not ouly does it allow for a better performance,
but also entails decreased need for tuning as discretization
steps are not to be provided.

With regard to GACSs resilience to local minima and
convergence capabilities, they are closely linked to the way
in which the algorithm mimics the Darwinian selection the-
ory. In other words, the manner in which the evolutionary
process is carried out influences greatly the performances.
In [7], an evolution algorithm well adapted for GACSs is
presceuted. It is very well suited to small populations of
chromosomes and has attractive convergence capabilities.
It features the use of local instead of global competitions
Local competitions have the
property of conserving the genetic diversity of the popu-
lation. Such a strategy helps avoiding local minima and
thus contributes to the robustness of GACSs. Moreover,
the mmtation operator corresponds to a random search re-
lying on perturbations with an infinite-support distribu-
tion (i.e. Gaussian distribution). Combined with the fact
that the best chromosome is kept for the next generation,
convergence with probability one is assured.

In Sec. 4, it is shown that the proposed GACS-based
matching motion estimation achieves better performances

for the crossover operator.

than the hierarchical fast search technique, while requiring
less than half of the latter computational load. Further-
more, the presented algorithm demands much less tuning
than usual techniques in order to reach good performances.

4 Experimental results

The proposed GACS-based matching motion estimation is
tested against the hierarchical matching motion estima-
tion used in [4]. The performances of both methods in
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estimating the camera motion existing in a scene are com-
pared. So as not to bias the estimation by the presence
of outliers and avoid the phenomenon of “locking on” for
the hierarchical approach [8], the support of estimation is
restricted to the background [4]. The motion model is cho-
sen to be affine.

Figures 1 and 2 compare the performances of the propo-
sed GACS-based method with the hierarchical method for
respectively the sequence “Table Tennis” and “Flower Gar-
den” (CIF format). The former sequence is characterized
by a strong zooming while the latter sequence undergoes
a panning. The results for the GACS-based method were
obtained by performing 100 evolutionary steps. Although
this corresponds only to one third of the computational
load of the hierarchical method, the proposed GACS-based
method achieves better performances in terms of the eva-
luation function (i.e. MSE).
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Figure 1: Performances of the proposed GACS-based method and
the hierarchical method for the “Table Tennis” sequence.

Flower Garden

280 - GACS-based method A

250} —.— Hierarchical method

S
N
N
o

Figure 2: Performances of the proposed GACS-based method and
the hierarchical method for the “Flower Garden” sequence.

As far as the optimization is concerned, the typical be-
havior of the proposed GACS-based method is highlighted
by Fig. 3. In the first stage of the evolution, the best per-
forming solutions are found by mutation. The latter allo-
wing dramatic changes in the search space, it permits to
enter the zone encompassing the optimal solution. At this
stage, the refinement of the available solutions is carried
out by crossover. By combining the information present
in different well performing solutions, the optimal one can
thus be reached.
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Figure 3: ‘lypical optimization behavior of the GACS-based
method (crossover = 2, mutation = 1 and no improvement = Q)

5 Conclusion

In this paper, a GACS-based method for matching motion
estimmation is proposed. Belonging to the class of stochastic
optinization method, it tries to mimic the Darwinian evo-
lutionary theory. Conversely to usual GAs, the proposed
method does not require any binarization of the solutions.
It is characterized by it robustness to local minima and
good convergence capability. Furthermore, it does not re-
quire extensive tuning and is readily nnplementable.

Experimental results have shown that the proposed
GACS-based method outperforms hierarchical matching
motion estimation. Better optimization performances are
achieved while reducing the computational load by two-
third.
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