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La texture est un des éléments clefs de la segmentation
d’'images pour l'interprétation de scéne. Dans cet article nous
proposons un algorithme non-supervisé de segmentation
d'images en zones de texture "homogeéne". Cette opération est
une tdche fondamentale pour l'analyse d’images en
cartographie, ou elle permet d’identifier aisément
d’'importantes régions a la texture similaire (zone urbaine,
cultures, foréts, ...). L'approche adoptée consiste & effectuer
une segmentation basée sur les caractéristiques des textures.
Ces caractéristiques sont diffusées de maniére anisotropique
sur l'ensemble de l'image & analyser. Les zones de texture
"similaire” sont alors itérativement approximées par une
texture unique, identifiant ainsi une zone de texture
"homogene"”. Des examples d'application de l'algorithme
proposé a des images de synthése et réelle sont présentés.

1. Introduction

Segmentation of complex images in regions of
homogeneous texture is often the initial step in automatic
image analysis, enabling the a posterior choice of tools
adequate for further interpretation of each region. It is, for
instance, a fundamental task in image analysis for
cartography purposes, separating the whole image its major
distinct regions such as urban areas, agriculture fields,
forests, ete. Many existing segmentation algorithms are
based on the grey level value at each individual pixel, and
not on texture characteristics, and are thus only appropriate
for segmentation of smooth surfaces, typical of man-made
objects, and not for processing views of natural scenes.
Amongst other approches , such as the fitting of parametric
models, the co-occurence matrix has demonstrated its value
for texture discrimination. In particular, the subspace
method [Oja82] has shown its efficiency for natural texture
classification. However, in its present form, the algorithm
requires an initial learning phase, requiring the definition of
a representative set of distinct visual appearances of each
texture, which may not be possible in some cases or else
require a time consuming inventory task.

In this paper, we present an unsupervised version of
the subspace method, that combines the advantages of the
subspace approach with the controlled smoothing of
anisotropic diffusion methods. This algorithm, as it is shown
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Texture is a basic element in image segmentation for
scene interpretation. This paper describes an algorithm for
unsupervised image segmentation in regions of homogeneous
texture. This is a fundamental task for the analysis of
images for cartography purposes, where it enables the
identification of the important homogeneous texture regions
(urban areas, agriculture fields, forests, ...). In our
algorithm, multidimensional texture characterisics are
diffused in an anisotropic manner over the whole analyzed
image. The regions of
associated to a single texture, identifying in this way a zone

"similar” texture are iteratively

of "homogeneous” texture. Examples of application of the
proposed algorithm to synthetic and real images are
presented.

in the paper, is able to yield a good identification of the
principal regions of images of natural scenes without
needing the a priori creation of a texture data base.

The subspace algorithm is briefly described in Section
2. In Section 3 we present our algorithm, and in Section 4
we give examples of its application to a digitized
photography including an agricultural region and several
zones of distinct ground characteristics (rocky regions, bare
fields, ...), demonstrating its ability in partitioning the
global image into its principal components. Finally, we
present our conclusions and some ideas for future work.

2. The Subspace Algorithm

The subspace algorithm for texture classification is
based on the association of a vector subspace to each distinct
texture type. It is ultimately based on the discriminating
properties of co-occurrence matrices, which are local
estimates of the second order statistics of the grey level
distribution. Let = (i, j) be a generic pixel location, and let
i; be the grey level at s, i, €{1,2,---,N} =1, where N is the
number of grey levels. Let d =(d;,d;), d;,d;e Z, be a fixed
vector. The co-occurrence matrix of a closed region A, C 7 is
a (NxN) non-symmetric square matrix, whose generic
(n,m) element is an estimate of the second order joint
distribution of pixel intensity

CJ(n,m) = Pr[is = n,iHJ = m] s,s+(§e A.
To each possible pure texture it corresponds a distinct

co-occurrence matrix. The feature of the subspace method
which makes it adequate for natural texture segmentation is
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the recognition that natural, non-pure textures should be
locally characterized by "similar” co-occurrence matrices. In
fact, during its learning phase, this algorithm associates to a
given texture a proper subspace of the space of all possible
co-occurrence matrices, defined in the following way. Let
Sq = {51,52,...,5M} be a collection of sites belonging all to
the same texture A, and let C_, i=1,2,...,M be the co-
occurrence matrices computed over a small neighborhood of
each site in 4. Define the N 2 Vectors obtained by stacking
the columns of the matrices C

v, =vect(C, ).

5
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v, ] (N*xM) be the matrix
collecting all vectors corresponding to texture A, and let
U,,V,, D, be obtained by singular value decomposition of
X,

Finally, let X, = [vsl Vg, -V

NZ
T T
XA = UADAVA = ZKiu,-vl- .
i=1
According to the basic assumption of the subspace
method, the number of non-zero singular values of X, must
be much less than Nz, i.e., X4 can be well approximated by

&\
Xp= Z Xiuivi’].’

i=1
meaning that each v, belongs - approximately - to the
subspace I1, spanned by singular vectors corresponding to
the r, largest singular values. Once a subspace is
associated to each texture, classification of each pixel is done
by finding the subspace on which the corresponding co-
ocurrence matrix has the largest projection.

3. Anisotropic Diffusion of Texture Attributes

The algorithm proposed in this paper adds one
hypothesis to the fundamental assumption of the subspace
method. Namely, it assumes that whithin one region of
homogeneous texture the local co-ocurrence matrix changes
continuously, while accross boundaries of distinct textures
there should be an abrupt change. This same assumption,
but on the grey level of each pixel, is the basis of the
anisotropic diffusion methods for image segmentation. Our
these methods to
multidimensional features, replacing the grey-level at each

algorithm extends work on
image site by a vector subspace to which belongs the co-
occurrence matrix computed in its immediate neighborhood.
The key idea of the method is to gradually diffuse texture
information inside homogeneous regions, such that at
convergence, the subspaces 1, learned in the initial step of
the subspace method are identified. In this way, at the end
of the diffusion process, the global characteristics of each

texture are learned in an unsupervised manner.

This extension of the anisotropic diffusion methods
requires the definition of a metric in the space of all
subspaces of a given finite dimensional vector space, to be
able to compare different textures amongst them. Here, we
give an heuristic description of the algorithm, reserving a
more rigorous presentaiton to a forthcoming paper.

Let I, and I1; be two proper subspaces of RNZ, of
dimension r4 and rp respectively and let U, and Up be
matrices whose columns are orthonormal basis for T, and
IT5. Let y; be the singular values of the matrix UZUB. We
define the following normalized measure of similarity
between the two subspaces

mniry.r
p(My M) =l - —— § B)y?zsinze.
max(rq,rg) 5

This similarity measure is related to the notion of principal
angles between two subspaces [Golub]. In particular,
p(11,4, 1) =1if T4 LT g and p(I14,TT5) =0 if [T, =I1p.

The algerithm is initialized by defining a regular lattice
L over the image. This one is partitioned in a set of fixed
size windows 7/_, a site s of the lattice corresponding to a
window. For each site s=(i,j) of this lattice a
unidimensional subspace l'[? =span(vcct(CS)), where the
co-occurrence matrix is computed over 9/,. From this initial
assignment, the subspaces associated to each site are slowly
deformed and/or enlarged making them more similar to
their close - in texture sense - neighbors.

Let 7/, denote a neighborhood of site s in the regular
lattice L. At iteration %, the set of sites with which site s is
going to diffuse is obtained by comparing ﬂf_l to all I_If_l,
tev,

k
X =[]

Veew,, if p(IE {7 )<p = x! :[Xk

s

U,"“‘}

where 0 <B <1 is a fixed threshold that controls the amount
of smoothing performed by the algorithm. ﬂk is obtained by
principal component analysis of Xf, as the subspace spanned
by the vectors associated to its most important singular
values - which satisfy a given threshold condition.

This iteration continues until the following stopping
condition is achieved:

(Xk _Xk_]>/xk <e with ¢*= ZP(Hf,Hf‘I).

SES

4. Examples

To study the effect of boundary shapes, we applied this
algorithm first to a series of images synthetized by
combining two natural textures, cork and paperboard, with
sharp boundaries of three different shapes between them,
see Figures-1 and 2.

In these trials windows W, are square of size 10, the
neighborhoods ¥/, correspond to the 4 neighbors system and
the cliques are the 2nd order ones. To reduce the
computational load, the number of grey levels has been
decreased to 4 by linear quantization. For case (a) and (b),
the co-occurrence matrices were computed using a circulaly
symmetric definition, where element (n,m) is an estimate
of the second order joint distribution of pixel intensity

Ci(n,m)= Pr[[‘\. =n,i =mfls—t]|= d], s.te A,




with d =1. For case (¢) we used the previous definition with
a displacement vector d =(1,1). The smoothing threshold
was set to 0.2.

cork ‘paperboard
Figure-1: test textures.

(a) (b)
Figure-2: test images 50 x 50.

To visualise the result of the algorithm we plot in
Figure-3 the value of

n(i,j)= p(ni‘j My )2 + P(Hi,j L )2’

at the end of the algorithm, which gives an idea of the
variation of the solution found across the whole image. Zero
is coded as white and large values correspond to the dark
regions. Finally, in Figure-4 we show the result of applying
a simple clustering procedure to the subspaces found by the
segmentation algorithm, with distinct classes being coded by
different grey levels. Figure-3 shows that the boundary has
been well indentified in all cases and that inside each
homogenous region an almost constant solution has been
found - corresponding to values of (i, ;) close to zero. The
number of distinct classes in Figure-4 varies from two to
five, but in all cases the image was successfully split into two
large homogenous regions. We conclude that boundaries can
lead to the definition of additional classes, corresponding to
different mixing percentages of the individual textures inside
the windows W, that fall on the border of distinct classes,
whenever there is not a clear predominance of one of the
classes, as in case (¢).

(a) (b) ()
Figure-3: result of segmentation 5x35.

(a) (b) (c)
Figure-4: result of clustering 5x 5.

The following figures show the result of the anisotropic
texture diffusion in a real image obtained by scanning an
original 22 x22 cm black and white aerial photography with
a resolution of 300 dpi. We preprocess the digitalized image
by reducing its size to 250x270 (Figure-5), performing
histogram flatenning (Figure-6) and reducing the number
of grey levels to 8 by linear quantization.

The algorithm was applied with the same neighborhood
system as the one use for the test images of Figure-2. The
co-occurrence matrices were computed using a displacement
vector d =(1,1). The smoothing threshold B was set to 0. 4.
We show in Figures-7 and 8 the values of 1, ; after 8 and
32 iterations, respectively. Figures-9 and 10 display the
classes found in each case by the clustering procedure.

Figure-6: image after histogram flatenning.

As it should be expected, the homogenous regions grew
during the diffusion between iterations 8 and 32. The
agriculture fields at the right top of the image were rapidly
grouped together into one homogenous region, as well as the
dense forest area at the left top. The bare fields at the left
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bottom are successfully recognized after 32 iterations, while
the iregular rocky“portion on the right bottom begins to
appear only at iteration 32. The small distinct areas at the
center of the image (above the road) are not included in the
other larger zones. The largest of these two - upper
triangular region - is large enough to be considered as a
separate region, while the other one appears under the form
of boundary artefacts.

The sparse forest region at the center of the bottom of
the image has disappeared during the diffusion process

Figure-7:

Figure-8: segmented image ( 32 iterations).

between iterations 8 and 32. This is explained by the fact
that the original data {H? was only used in the
initialisation step and can possibly be corrected by
considering and additional term that measures the fit to the
data - i.e. distance between ﬂ? and l'If - in the present

diffusion algorithm.

5. Conclusion

We presented an algorithm for unsupervised

segmentation of real images according to their texture
characteristics. It is inspired on the subspace method for
texture classification, replacing its learning phase by a
multivariable anisotropic diffusion procedure. The
performance of the algorithm was assessed on a real aerial
photography, demonstrating its ability to decompose the
image in its important regions. In its actual form, the
algorithm is based on a non-optimal definition of the
diffusion operator. Future work will address the definition of
a framework to formalize the diffusion process.

Figure-10: clustered image (32 iterations).
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