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RESUME

Dans cet article, le filtrage adaptatif de modéles AR
multicanaux est considéré. Afin d’obtenir des estimées des
paramétres AR insensibles aux bruits gaussiens, on propose un
algorithme en treillis permettant de résoudre les équations
« normales aux ordres supérieurs ». Notre algorithme peut étre
considéré comme un calcul récursif de la pseudoinverse d’une
matrice bloc-Toeplitz dont les blocs ne sont pas carrés. La
méthode proposée tient compte des problémes d’identifiabilité
dus & Putilisation de cumulants, et fournit des estimées
consistentes quel que soit le modéle considéré,

Multivariate system identification is used in many

applications, such as multichannel equalization, source
separation, econometry ... (for a bibliography, see [1] for
instance), and has been widely studied under the assumption of
gaussian inputs. But the Higher Order Statistics (HOS)
properties may be of use if the systems are not minimumphase,
or if the outputs are disturbed by gaussian noise. Muitichannel
ARMA identification with HOS has been dealt with by some
authors {2, 3], but as far as we know, no adaptive approach has
been proposed, in spite of the often encountered nonstationarity
of the signals under study. The aim of this paper is to provide
such an approach. The algorithm we propose is an extension of
Swami & Mendel’s univariate double lattice [7], and uses an
instrumental variabie to compute recursively the pseudo-inverse
of a block-Toeplitz matrix with rectangular blocks.
The paper is organized as follows. In the first part, the reader is
introduced to multichannel ARMA processes, and to cumulants
of vectorial processes. In part II, we derive the proposed
adaptive lattice algorithm. In part III, we propose a
modification of the used equations in order to guarantee
identifiability. Part IV provides results of simulations.

1- Multichannel AR estimation using cumulants

In the whole paper, we consider the multivariate causal
ARMA model

iA(i) x(n-i) = iB(i) w(n - i) )]

i=0 i=0
where A(i) and B(i) are respectively the rxr AR and MA matrix
coefficients, w(n) is the input vector process and x(n) is the
output vector process. w(n) is supposed to be non gaussian, and
x(n) may be corrupted by a gaussian vectorial noise v(n). We
call y(n) = x(n) + v{n) the observed vector process.

Several definitions have been given for cumulants of vector
processes. The most convenient in our case has been given by
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Swami et al. [2]. If y(n) is a r-element vector, the
autocorrelation and 3™ order cumulant are respectively given
by: .

Czi(v) = E{y(n) ® y(nt1) }

Csx(11,%2) = E{y(n) ® y(nt1)) ® y(n+1,)}

where ® means the Kronecker product.If the reader is not
familiar to the Kronecker product and the unvec operator, we
refer him to [4] for definitions and properties. The higher order
cumulants can be defined in the same way, but they involve
permutation matrix. Note that a k-th order cumulant of a r-
element vector is a *-element vector.

Let H(k) be the impulse response coefficient matrix, and
Hi(2) its z-transform. We will suppose our ARMA model has
the following properties :
1-A0) =1, H0)= I, B{0), B(q) and A(p) are full rank.

2 - Hi(z) has no pole-zero cancellation,

3 - rank (T ) =, with Ty, = unvec, , & (Liw), where Ly, is
the k-th order cumulant of the input process.

Under these properties, the multichanne! higher order equations
can be written :

iA(i) Sy (b7 -0 =0, t>q (Qa)
i=0

iA(i)Eky(t,q-i)z (I, ®HN,, @b
i=0

with Cyy(m,n) = unvecr e ( g1y (m,n))

IL. The adaptive lattice algorithm.

In the derivation, we consider a purely AR model for the
sake of simplicity, and we use third order cumulants. The
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extensions to the estimation of AR part of an ARMA model and
to higher order cumulants are straightforward and will be given
afterwards.

In equations (2), let t=0 and collect them for 1=0 to p. The
following system is obtained:

RA=¢,®T,, (3)
with : e=[10. 0"
A=[AQ)AQ) .. AP
{— 'C';ry(o,O) 63Ty(o,~x) E;ry(o,-p) 1
=T . =T
C;, (01) Cy, (0-p+ 1)
R :{ ; DR %
‘ﬁ;y ©, p) '63Ty(o,0) J

R is a nonsymmetric block Toeplitz matrix with rectangular
blocks.

Suppose R is full rank ( this will be discussed in part III).
The A matrix can be obtained using the Moore-Penrose pseudo-
inverse of R. To derive an adaptive algorithm, we seek to
inverse recursively the R matrix. Symmetric block Toeplitz
matrix recursive inversion has been dealt with by Akaike [5],
and the case of non symmetric ones has been considered by
Swami [6], but both of them have supposed the blocks to be
square. Our approach cover the case of rectangular blocks, and
can thus be considered as a recursive computation of the
pseudo-inverse of block Toeplitz matrix with rectangular
blocks.

Let us define the inner product as :

<u(m),ym)> = >:1 @@y

<u(n),y(n)> is the weighted estimation of E[u(n) ® v'(n)]. Note
that:

<u(),v(m)> = zl Ay ),

but we have chosen the Kronecker product notation in order to
make the link with the definition of vector processes cumulants.

Let z(n) be an instrumental process associated to y(n). z(n) is a
s-element vector, and we allow s to be different from r.

Let ©pos () = < Zpos (1), Y1 () >

x| ] y(m) Tl

withzgpﬂ(n) = L ( : )J , X,,+;(n) =i_ ( ; )J
z(n-p y(n-p

In the stationnary case, ®,.;(n) is a non symmetric block
Toeplitz matrix, and the blocks are rectangular if s=r. If 2(n) is
chosen equal to y(n) ® y(n), ®p.,(n) is an estimate of R.
Consider the forward linear prediction of y(n) so that the
prediction error fi(n) is orthogonal to z(n-i) = y(n-i} ® y(n-i) for
i=1,2, ..,p. It can be shown that this prediction problem is
equivalent to the resolution of the system (3). Note that the
orthogonality introduced here is not the conventionnal
orthogonality condition.
This prediction problem is solved using a double lattice
structure involving the following four linear predictions:
1. the forward linear prediction of y(n) defined above.
2. the backward linear prediction of y(n-p) so that the
prediction error by(n) is orthogonal to z(n-i) for i=p-1, ..., 1,
0.

3. the forward linear prediction of z(n) so that the prediction
error f_p(n) is orthogonal to y(n-i) for i=1,2, ...,p.

4. the backward linear prediction of z(n-p) so that the
prediction error Ep(n) is orthogonal to y(n-i) for i=p-1, ..,
1,0.

The structure is made of two lattices, excited respectively by
the original process y(n) and the associated instrumental process
z(n), and coupled by their reflexion coefficients.

The algorithm is given in table 1. Its complete derivation is
too long to be given here but a longer paper is currently into
preparation. It will be sent to any interested reader on request
to the authors.

Remarks:

1. Note that this algorithm involves two More Penrose
pseudoinverses, while the instrumental variable double
lattice derived by Swami [7] involves two matrix inversions.

2. In spite of significant differences in their derivation, mainly
due to the fact that pseudoinverses do not obey to the same
properties as inverses, the proposed algorithm and the
double lattice of [7] have similar equations but with different
matrix dimensions.

3. The proposed algorithm can be used to compute recursively
any block Toeplitz matrix M with rectangular block,
provided M can be written as the intercorrelation matrix of a
r-channel process y and a s-channel instrumental process z.

4. The extension to ARMA(p,q) models is obvious. In such a
case, the matrix R of equation (3) is

=T =T =T
Cyy 09 C3(0a-D) C3y(0:a-p)

—T ~T
Cyy (0.9 +1) C3y(0g-p+h

=T =T
C3y 0.9 +p) C3y 0.9)

which can be built by choosing:
z(n) = y(n-q) @ y(n-q)

11 Identifiability.

In section II, we have supposed the matrix R to be full rank.
This may not be true in some cases [2]. However, Swami et al.
have shown that the AR parameters of of a multichannel system
could be uniquely determined from all the cumulants taken into

Myo={ Ckt) / k=g-p,..,q t=qtl, .., q+p }

In the previous section, we have only taken the cumulants of
M,q with k=q (=0 in the AR case). In order to assure
identifiability, we propose to use a linear combination of the
cumulants of M,, . This can be seen as an extension of the w-
slice method of Fonollosa et al. [8] to the muitichannet case.

We will use the notations of [6] and {8]. Let us call w-slice
the following matrix:

Wh-0)= 353 (-1, HW()
i=0
where the W(i) are constant r*x r matrices.



§A(1>§(k,j 1) =§(§A(j)23(k it )W)

SAGIWk, j+0)=0 ift>gq (4)

J=0

Equations (4) are the wslice counterparts of the higher order
normal equations (2).

Let W({i)=1, ®A(), and calculate the wslice for t=q:

Wa,1) = 365(g— i), ®AG))

i=0Q

—u—/(q,t) = gg unvec [(H(j) ®H(j+qg-H)®
H(j - )T (1, ® A®)
Wg,t) = 2.3 B~ )T (H() ®

J=0i=0
H(j+q-1)"(I, ®A®i)
Taking the z transform of the last equation, we finally obtain:

W(g,2) = H(z" )T 5[H" (0)®B”(¢)]
which can also be written:
A(zYW(g,2) =Bz )Ta[H (0)®B"(9)] (5)

As A(z) and B(z) have no common root, the recursion (5)
holds with minimal order p. Therefore W(q,z) is a full rank
slice (see [6] for definitions about full rank slices).

With this result, consistent AR estimates can always be
obtained from equations (4). The system to solve is then made
of linear combinations of cumulants instead of cumulants. The
recursive resolution can be achieved with the algorithm of
section II with the following choice of z{(n):

)= 3 Y- )@ A(Yn=g -
Note that in the AR case, the matrix of the system is block
triangular, and the elements of the diagonal are

T3.[H"(0)®B”(q)] . Such a matrix is full rank, which
confirms the previous result deduced from recursion (5).

Of course, the real A(i) are not known as they are precisely
what we look for. Therefore, in the computation of z(n), the
current estimates of the A(i) instead of the real ones. The
convergence of this approach has not been shown yet, but, as
simulations give encouraging results, further research are
carried out on this topic.

IV- Simulations.

In this part, we give results of simulations in order to show
the performances of the new algorithm. Two models are under
study:

model 1: AR(2) model with 3channels:

(05 -04 02) (05 -02 08)

AD=|-06 0 0.1 JA(2)=L 03 o0l o}

01 0 03 05 02 O

model 2:
(o,s o)
AD={pg 07

1 0 2 0
B(O)z( 0 1] B(l)=(1 O.6J

Simulations on both models are performed with the approach
based on a 1D-slice and the approach based on the wslice.

ARMAC(1,1) model with 2 channels:

case 1. for model 1, the matrix based on the 1D-slice is full
rank. Results are given at Fig. 1. We note almost similar
performances for both approaches. The convergence of the
estimated parameters is a little slower for the w-slice method.

case 2: to show the necessity of the wslice method, mode] 2 has
been chosen so that the 1D-slice based matrix has deficient
rank. Fig. 2a shows that consitent AR parameters cannot be
obtained from this single 1D-slice. The wslice method gives
good results, as can be observed at fig. 2b.

Conclusion.

This paper deals with adaptive estimation of the AR
parameters of a non gaussian multichannel ARMA processes.
The proposed algorithm is a recursive computation of the
pseudoinverse of a block Toeplitz matrix with rectangular
blocks, and is based on a double lattice structure. In order to
obtain consistent estimates of the AR parameters, the system to
solve involves linear combinations of cumulants instead of
single cumulants.
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Time initialisations:
f ) Form=1top, do
0.8 iD-slice |“ 1|
F, (0)=B, (0)=4] . | §<<1
0.6 o]
Lo]
o e 1 AL (0=, (0)=0,,,
0.2 .; (f \ W-Slice | 7/m (0) = ]
?é End of for loop
0 ; ‘ , , , For n=1 to Nmax, do:
0 1000 2000 3000 4000 5000 Order initialisations:
Fig 1. first coefficient of the A(1) matrix for [ (m)y=b,(n)=y(n)
model 1. The true value is 0.5. - - -
7 (=5, (n=z(n)
o Fy () =By (n) = AF, (n= 1)+ 2(n)y" ()
16} }/0 (}’l) = 1
14k Form=1top, do:
1.2’91 A ()= AAT (n—1)
1
—_— 1
08 4 + 7”‘_1(” 1) .—m—[(n )f ( )
06 1 A (n)= AN (n-1)
04 4 :
02 1 t————f (m)b]_(n-1)
o . . . i }’m—-l(n—l) —m-l !
0 1000 2000 3000 4000 5000 rf (n)= ~B? (n- 1)Af ()
Fig 2a: first coefficient of the A(1) matrix for TP(n)y=~F! (mA° _ (n)
model 2, estimated using only one 1D-slice. The =7 7 T
true value is 0.5. L, (m=-B,  (n=DA,_,(n)
rn:(n)~—FTTl(n)A l(n)
2
A _ £ )=f ()+TF (b, (n-1)
16} ] b, (m=b,  (n-1)+T7 (n)f L
14}
B 7 m=F (m+TF @k, (n-1)
b, (m=b, (n=1)+T7(n] _(n)
F,(m=F, (n-4, ,(mB, (n-DA_ (n)
B,(m=B, (n)- Af—l (n)F?—l (n)Ab ()
ym(n—l)=ym—-l(n~ l)
1 i 1 Fl — NT — 1T —— —
0 1000 2000 3000 4000 5000 b (n-1B, (n-1p, (n-1)
End of order loop
Fig 2a: first coefficient of the A(1) matrix for .
model 2, estimated using the w-slice method. End of time loop _
The true value is 0.5 Table 1: the proposed algorithm.



