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Résumé

Les représentations temps-fréquences (TFR) sont sou-
vent employées dans le domain du traitement du si-
gnal. Généralement il n’est pas facile de trouver la
représentation qui est adaptée la mieux a la struc-
ture des signaux considerés et au probléme de ’ana-
Iyse. Pour le cas de classification avec deux classes
de signaux données nous derivons des mésures d’opti-
malité pour TFRs. Ces mésures aussi bien que I'idée
de classification ne posent pas aux features mais a la
représentation temps-fréquence non-parametrique des
signaux. De plus il n’est pas nécessaire de supposer
un modele des signaux. La représentation optimale
est celle qui rend la mésure maximale. Pour le cas
d’une connaissance imparfaite des classes de signal,
Ou on ne connait que quelque réalisations de chaque
classe, nous montrons comment la représentation op-
timale peux étre estimée.

1 Introduction

Time-frequency representations (TFRs) are powerful
tools for signal analysis and thus widely used in signal
processing. It is well known, however, that there is
no single TFR which is “the best” for all problems.
It is still an unsolved problem how to determine the
optimum TFR for a given signal class and analysis
task.

We address the problem of classification of signals
of a fixed length. For simplification only two classes
are regarded. The question is: How can we find the
TFR which is best fitted for the classification task?
We restrict ourselves to TFRs of Cohen’s class [1].

The usual way is to define from an @ priori know-
ledge of the signals structure one or more features
which are supposed to give a good representation of
the interesting qualities of the signals. Then a TFR is
searched which allows a good (reliable, robust, exact,

..) estimation of these features. Afterwards a clas-
sification is performed in the low-dimensional feature
space.

However, this method is restricted on cases where
the structure of the signal classes is known and, fur-
thermore, a knowledge about relevant features is avai-
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lable in advance. Frequently, these conditions are not
fulfilled. Especially when analyzing complex signals,
often it is far from obvious which property is the rele-
vant one. Furthermore, the structure of the signals is
often unknown,

Here we propose a new method for dealing with the
classification problem: Quite intuitively, a TFR is cal-
led “good” if all signals of one class are similar to each
other, but dissimilar to the members of the other class.
Once such a “good” representation is found, an un-
known signal can be assigned to one of the classes by
just comparing the degree of similarity to the different
classes and choosing the class that shows the largest
similarity to the signal.

2 Optimizing the TFR

In the following this idea is formulated in a mathe-
matical framework: Each signal f(t) is represented

in the time-frequency domain by its normalized TFR

C= |gf L where we only allow TFRs out of Cohen’s

class which are determined by a two-dimenisional com-
plex kernel function ®(£, 7). The TFR of an arbitrary
function f(t) € Lo(IR) is an element of the function
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space Ls(IR x IR) , where a norm is defined by
ICs12 = [ 1Cy(t,w3 ) dedo

Hence, a representation C of a signal f lies on the unit
sphere S of Ly (IR x IR).

The distance between two signals is defined via the
inner product of their representations Cj:

Ds(f1,f2) =1- < C1,Cy >

and hence depends on the used TFR.

A signal class is described by a stochastic variable
C, i.e. a probability distribution P on the unit sphere
S. The simplest case is P = const in a region of S,
and P = 0 else. However, in general P will have a
more complicated form.

Let two classes be described by the two stochastic
variables C; and C,. For localized classes it is natural
to take E(C;) as the representative of class 4:

B(C) = /S C P:(dC)

The mean distance of the funtions of class 2 to the
representative E(Cy) of class 1 is

DY — /S Da(E(C1),C") Py(dC")

It can be shown easily that D}? = D2l
Analogously the mean inner distance of class i is

i = [ Da(B(C)),C) PaC)
S

A simple measure for the ability of a given TFR (i.e.
a given kernel function @) to yield a well discrimina-
ting representation of the signals is given by

D¥
e = DG D
Thus, me measures the mean distance between the
classes compared with the mean inner class distances.
A large me means a good separation of the classes.
Note that me is similar to Fisher’s discrimination cri-
terion in discriminance analysis [2].

Clearly, it depends on the chosen kernel how much
the classes are separated in the time-frequency func-
tion space. The optimum TFR is now given by the
kernel ® that maximizes ms.

A signal f is assigned to a class by calculating its
representation C'y and searching the smallest distance
Da(Cy, B(C;).

The above measure me is only appropriate for the
case of two well localized classes. Often the problem
is not to discriminate such two classes but to decide
whether a signal belongs to a class (supposed to be lo-
calized) or not. However, this case can also be viewed
as a classification task, class 2 consisting of all the

signals which do not belong to class 1. Here the clas-
sification scheme is slightly different: For a function f
to be classified, its TFR C is calculated. [ is assumed
to be in class 1 if D(C, E(Cy)) is smaller than some
threshold .

The problem now is that class 2 (all the signals
which do not belong to class 1) tends to be very large
and no localization can be expected. In [3] a mea-
sure similar to mg is introduced for dealing with this
problem.

Here we propose a different approach for this kind
of problem. Recall that our essential objective is to
get an optimum classification rate. The measure me
is, for well concentrated classes, closely related to the
classification rate. In general, however, it is better to
use the classification rate itself as optimality criterion.
This can be done formally by replacing the distances
Dg by binary distances ﬁy,@ which are, for given vy >
0, defined as

- - 1a D@Z’Y
D%@‘{ 0, Do <~

Thus,
ci(y, ®) = /S Dya(C, E(Cy))P(dC)

is just the fraction of the functions of class ¢ whose
distance to E(C;) is larger than +.

Given a threshold « and the just proposed classifi-
cation scheme, 100 (1 — ¢1)% of the functions of class
1 and 100¢2% of the functions of class 2 are classsi-
fied correctly. If we assume equal a priori probabili-
ties for the two classes, the overall classification rate is
0.5 (1 = ¢1 + ¢2), which is still depending on the thre-
shold ~.

For a fixed kernel the optimum classification rate is
given by maximizing about all possible +:

’l’h@ = m'zylx(l — Cl(’)’, (I)) + 62(77 (I)))

Again this depends explicitely on the kernel ®. The
optimum kernel is chosen by maximizing mg.

For both of the presented optimization algorithms
the optimum kernel can be derived analytically (at
least in principle), if the probability distribution of the
two classes under consideration is known. If, on the
other hand, each class is given by a sample of realiza-
tions, ®opy must be estimated from this sample. This
problem is dealt with in the next section.

3 Estimation of the optimum ker-
nel with a finite sample of reali-
zations

Instead of the true probability distribution for the two
classes we often have only a random sample of func-
tions for which the class is known. From this informa-
tion the optimum kernel has to be estimated. This is



done by estimating the measure me or mg and maxi-
mizing this estimate with respect to ®. N
In order to get these estimates, the quantities D
and ¢;(vy, ®) are replaced by estimators.
With a sample of N; signals of class 1 and N> signals
of class 2, an estimator of D}? is given by

R 1 .
D=1-—-S"<«<0,C >
Fo1- T <ol

with €} is the natural estimator of E(C;): () =
1 - N% Yk C¥ Analogously an estimator for % can
be constructed.

For the quantities ¢;(7y, ®) we replace again E(C;)
by Ci, the ¢;(y,®) are estimated by calculating the
fraction of the sample with D(C, C;) > 7. Maximizing
over all possible v yields an estimate for Mme.

When maximizing mg or /e with respect to the
kernel @, a general problem arises: the kernel ®(¢,7)
is a complex function with infinitely many degrees of
freedom. Thus it cannot be determined by a finite data
sample [2]. In order to reduce the degrees of freedom
of the kernel, it must be parametrized by few para-
meters, allowing a reliable estimation of the optimum
parameter values.

We chose the following parametrization by the two
parameters & and 7o:

(¢, T) = e_(z%) 6_(%) ;o $0,m02>0

which corresponds still to a large class of TFRs (known
as Smoothed Pseudo-Wigner-Ville distributions [1}, in-
cluding all spectrograms with Gaussian windows and
the Wigner distribution (§p = 79 = 00).

4 Application on simulated data

In this section we show an application of the first ker-
nel optimization scheme on simulated data.

We regard two nearly non-overlapping wave packets.
The two classes are given by

f@®) = h(t)sin(wt + 1) +

2h(t — At) sin(wt + p2) + ae(t)
g(t) = 2h(t)sin(wt + p3) +

h(t — At) sin(wt + ©4) + ae(t)

with At = 32, h(¢f) a hanning window envelope
function with width 30. The phases ¢; are random
numbers and uniformely distributed in [0, 27], the fre-
quency w/2m being set to 0.15. €(t) is white noise,
€(t) ~ N(0,1), whose amplitude is controlled by the
parameter a. In figure 1 (a) and (b) two realizations
of each signal class with a = 0 are shown.

We simulated signals of length L = 256 with 100
realizations for each class which served as learning set.
The (estimated) discrimination measure mg was maxi-
mized by means of a standard nonlinear maximization
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Figure 1: (a) Two realizations of signals of class 1, the two
signals of lenght L = 256 being represented as two subse-
quent sections of one single signal. The noise parameter a
has been set to 0. (b) The same for class 2. In (c) and (d)
a histogram of the empirical distances for the two classes
(class 1 solid line, class 2 dashed line) are plotted with D¢
( using the estimated optimum kernel) and, on the other
side, the Wigner distance d. {e) and (f) The empirical cu-
mulative distribution of the distances, evaluated with Dg
and d.

routine, thus leading to the optimum kernel parame-
ters.

A second set of 100 realizations for each class served
to test the resulting representation: One of the new
signals of class 1 was chosen arbitrarily as reference
signal fp. For the estimated optimum kernel @, the
distances Dg(fo,-) to each other signal of class 1 and
class 2, respectively, were calculated. The distribution
of these distances give an impression of how well the
classes are separated.

For comparison we also calculated the distances
d(fo,-) where d = Dg=, i.e. the distances if we use
the Wigner-Ville distribution.

As explained before, the distances Dg(fo, f;) and
Dg(fo,9;) were calculated, using the estimated opti-
mum kernel. fy was an arbitrary realization of class 1
serving as representative for this class. The Wigner-
Ville distances d(fy,-) have been calculated for com-
parison.

For each class we get an empirical distribution of
the distances which is plotted as a histogram with a
bin width of AD = Ad = 0.05 in Fig. 1 (c) and (d).

The ability of the used distance measure (Dg or
d) for classification can be seen more clearly in the
empirical cumulative distribution (see Fig. 1, (e) and
(f)). The maximum distance A between the two cu-
mulatives is the classification quality. The difference
1 — A corresponds to the classification error, if the
above mentioned threshold is set to the value Dg or d
at the point where the largest distance appears.

Several noise parameters a were used. In Fig. 2 and
3 we set ¢ = 0.2 and a = 0.5, respectively. In each
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Figure 3: Analogous to Fig. 1, but with a = 0.5

case the optimum kernel was estimated. It can be
seen that even in the case of highly noisy signals the
two classes can be separated very well from each other
if the time-frequency distance Dg with the optimum
kernel is used, but the analogous with the Wigner-Ville
distance fails even with a = 0.

5 Application on real data

In order to illustrate the second kernel optimization
procedure we present a recent application from the
field of acoustic quality control: after the baking of
roof tiles the tiles have to be tested on fissures and
cracks. Defective tiles have to be removed. Until now
this task is done by human beings hitting the tile with
a hammer and analyzing the resulting sound. A typi-
cal signal is shown in Fig. 4.

It was not possible to find discriminating features in
the time or frequency domain by standard techniques.
However, with optimized TFR and the presented clas-
sification scheme good classification rates were obtai-
ned.

The two classes consist of the good tiles and the de-
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Figure 4: Example of the sound signal of a hit roof tile.

Figure 5: The quantity /e for various values of the kernel
parameters & and 7.

fective ones. For each class 60 signals have been avai-
lable. From each signal only the first 21 msec (corres-
ponding to 512 data points) were used. The quantity
me was estimated with 20 signals of each class. mg
for a region of the parameter space is shown in Fig. 5.
The kernel parameters with the maximum e were
found to be & = 0.031 f,, 70 = 20 f;, where f; = 24
kHz was the sampling rate.

With these kernel parameters an overall classifica-
tion rate of about 91% has been achieved.
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