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RESUME

Dans le probléme de séparation aveugle de sonrces, les so-
lutions sont généralement basées sur une fonction de coiit:
fonction de contraste [11], {3], ou polyndme dépendant de
statistiques d’ordre supérieur {13}, [5], et [7]. Dans ce pa-
pier, nous montrons qu’un critére simple, utilisant unique-
ment des cumulants croisés C'umys, permet de séparer N
sources a partir de N mélanges instantanés ou convolutifs,
pourvu que les sources alent des kurtosis de méme signe.

1 Introduction

First solutions of separation of sources, proposed in
[5],_was based on cancellation of higher order out-
put cross-moments E f(s;)g(s;). To avoid some lumi-
tations, other cost functions: contrast function [3] [11]
or polynomial function of 4th-order cumulants [2], have
been proposed.

In [9], we proved the efficacy of a simple cost func-
tion for instantaneous mixtures in the case of 2 sources
and 2 sensors. In this paper, we generalize the result
for instantaneous as well convolutive mixtures, with N
sources and N sensors. We also show the cost func-
tion is efficient if mixtures are corrupted with additive
(Gaussian noise.

2 Equation model

Let us consider N zero-mean unknown sources s;(),
assumed statistically independent. and N sensors, out-
puts of which are unknown linear convolutive mix-
tures z;(t) (in the most general case) of the sources.
Let us denote M(z) the polynomial mixture matrix:
M(z) = Z;\’:”b M(p)="?, where M(p) is NxN matrix,
and N, is the order of the filter. Denoting X(n) the
mixture vector, and $(n) the source vector at any time
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n, we have: X(n) = E;,V_—YZ) M(p)S(n — p).

The separation is achieved by estimating a NxN

_polynomial matrix W(z)_ satisfying W(z)M(z) =

PD(z), where P and D are any permutation and poly-
nomial diagonal matrix, respectively. The global ma-
trix W(z)M(z) will be denoted H(z) = (h;;(z)) =
Z(])V" H(p)z"", where N}, is the filter order:

Ny, - - B
Y (n) = Z H(p)S(n—p), and Y(2) = H(2)5(2). (1)

k=0

In tensorial notation [10}, the last equation can be writ-
ten:

Yin) = ZH%([)) o SH(n—p), (2)
k
Yi(z) = H}(z)eS(2),
where Y'1(z) and S(z) are two contravariant tensors,

H{ is an one time covariant and one time contravariant
tensor, and finally e is the contraction process?.

'The contraction is equivalent of the matrix product. So the
general coefficient of A’ = Bl o« G is a* = Zj bie
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3 Instantaneous mixture

3.1 Mixtures without noise

For instantaneous mixture model, issues of imatrices
(M, W and H) are scalar. Assuming the observations
are not corrupted by noise, one has X = MS, and one
is looking for a matrix W such that ¥ = WX = HS,
where H = WM = DP.

Denoting Cumago(yi,y;) = Cum{yi, vi, Y5, 4;), and
using multi-linearity properties of cummulants (see [12])
and source independence, we have:

; N 2 .
Cumaz(Yoms Yn) = thhmﬁl, (3)
i
where 0; = Cumn(s;, s, 8:,8). Let us consider the
functions J, = Y,.cn Ctndy (Y, yn), and J, =

Yomen |Cumga (Y, ya)|.  Assuming sources have the
same sign of kurtosis, Jy, = 0 or J, = 0 < Iyl =
0, Ve and m # n. This hypothesis on kurtosis is
realistic in many situations, especially for telecomnn-
nication signals and has been used by several authors

(9], [11], 8]

So each column vector of global matrix H hLas at
most one coefficient not equal to zero (suppose that
hni # 0. Then, equation (3) will be satisfied if only if
Mngiya = 0, V1 <7 < (N —m)). The global matrix
H cannot have 2 coeflicients different from zero in the
same column, but it could have 2 coefficients different
from zero in the same row. We will prove in the fol-
lowing that this case may be avoided using a simple
constraint on W.

We constrain matrix W such that w;; = 1. Then
global matrix is a permutation matrix. Let us consider
the mixture matrix M like a set of column vectors:
M = (ﬂ/fl,...,]VfN). And let us denote WiT, the +-th
row of matrix W. The assumption wy; = 1 implies that

WT £ 0. If HT, the i-th line of H, is equal to zero,
then all the coefficients of this line are zero:

hij = WIM; = 0. (4)

Mixture matrix M being a regular matrix, vectors M;
are linearly independent, it is impossible to satisfy the
relation (4), because it does not exist a real vector in
RN not equal to zero and orthogonal to N linearly
independent vector. With the constraint w;; = 1, we
then deduce each row of the global matrix H is not
equal to zero. There is at least one issue not equal to
zero on each row of H. Moreover, we already know
each column of H has at most one non zero issue, we

deduce there is one and only one non zero issue per row
and per column. The matrix H then satisfies = PD.

3.2 Mixtures with Gaussian noise

Let us denote N! a noise tensor, component of which
are assumed Gaussian, and independent of the sources.
Then, the mixture tensor is:

X'= M} e ST+ N, (!

ot
~—

and the estimated sources are:
Yi=H{ e X'+ W} eN (6)

In the following, we will denote @ the tensorial
product?, and we will use Einstein notation® (see [1]).
Let us now consider the 4-th cumulant Cumgy. In
general case, it is a 4-th order tensor, two times co-
variant and two times contravariant [10}, and will be
denoted Cumji. Using multi-linear property of cu-
mulant, source independence, and independence be-
tween signals and noises, we may expand ('umyz =

Cum(Yy, Y1, 7, Yl) flom relation (6) ([10], [4]):

N T T
Cumy3 = H{QH{ QH{ Q) H{ o Cumgs?

+ W ® I/VllT ® wi ® WIIT o Cumn}.
(7)

Noise being a Gaussian vector, then Cumpy3 equals
to zero. Moreover, because of source independence,
Cumg3 reduces to a diagonal tensor. Denoting 62,
the generalized Kronecker symbol, the general term of

Cumy? becomes:

e 2tk i gnT pT v, 200 cop
Cumys, = H,H; HEHP Cumg?l ™ 628,
— vy gk gl o, 270 Q
- ]{7”. H7ILH7IL HIIL( “’IIL‘S 27”.7” N (b)

From (8), we deduce C' “'”Y22L = (H.)YHE)?B,,.
This relation is similar to (3). Asswning the constraint
w;; = 1 on the matrix W, and using results of the last
subsection, we know the global matrix H is equal to
H = PD. This means that cancelling or minimizing

Js or J, leads to W = PDM ™! and:
Y = PDS+ PDM™'N, 9)

wlere D and P are diagonal and permutation matri-
ces, respectivily. As a conclusion, J, and J, are effi-
cienf cost functions, even with additive Gaussian noise.

?Tle tensorial product of two tensors, B} and €%, is the ten-
sor A3 = B} & 3, general term of which is uf’{i = bfc;'}c

3 . .

Example: the sum ar = iy bricijd;, will be reduced using

Einstein notations to a; = byicijd;.



However, let us remark that the estimated sources are
not perfectly separated, but are corrupted by the noise,
as it is shown by equation (9).

4 Convolutive mixture

In the case of convolutive mixture, using Einstein no-
tation, equation (2) can be rewritten:

Yi(n) = Hi(p) e S1(n —p). (10)

Considering tensors Yi(n) and Y(n) at different
time, (7) can be generalized:

Cum(Yi(p1), Y (p2), Ya(ps), Y (p4)) =
(1) Q) A1 (42) @) Hi(43) @) Hi (44)
oCum(Si(p1 — ¢1), S'(p2 — ¢2),
S1(ps — 43), 5 (pa — a))-

The general term of this tensor is:

Cumy 5 (p1, p2, p3, pa) =
a T
H () ] (1) Hi(42) B (0a)
Cum(sa(p1 = q1)s su(p2 — 42),
Se(p3 = 43), 8a(Pa — @), (11)
where HE(q) (respectively H2T(q) is the coefficient

hio(q1) (vespectively N, (q1)) of the matrix H(¢y) (see
section 2).

Using source independence assumption, we have:

Cum{sa(pr — 1), su(p2 — ©2),
se(ps — q3), sa(pa — qa)) =
6ccz(lfcu'm(5a(pl ~q1), s6(p2 — @),
se(ps — 43), s4(pa — qa))-

Then, relation (11) becomes:

Cumny 5(p1, p1, 13, pa) =
Hf(’h)HZT(’D)HE(’IB)H!LT((M)
Cumg,(n —qu — p1,n— g2 — P2,

n— (3 — P3,1 — G4 — Pa)-

Finally, using H(q1) = hiu(q), the above relation
can be written:

CumYﬁ(Pl»PZaPBaTM) =
hia(ql)h‘ja((IZ)hka((IB)hla((M)
Cums, (p1 = 1,2 = G2+ 23 = @304 = ). (12)

Assuming that the sources s, are iid and stationary
signals, the cumulant simplifies to:

Cumg, (1 — Q1,02 — 92,73 — (3,04 — Q4) =

. +p ,
§ ) @) Cun, (p, 9,y ).

Denoting Cumg, (p,p,p,p) by Ba, we deduce from
equation (12):

C’u.'lnyfjl(pl,pg,pg,p4) =0=
hio(q1)hie(q1 + p1 — p2)
hja(qr + p1 = p3)lja(qn + p1 — pa)fa = 0.
(13)

Filters h;,(2) are M-order causal filters, conse-
quently h,(p) = 0 for p < 0 and p > M. Then,
in equation (13), the ¢y parameter is limited by
max(0,py — p1,p3 — p1,pa — 1) < ¢ <min(M, M +
pr—p, M+ ps—p1, M+ pg— ).

Finally, choosing p1 = po = 0 and p3 = pg = q1 — ¢,
where ¢; and ¢, are any integer, equation (13) is:

h’?a‘(ql)h‘]%a.(qz)ﬂa = 0. (14)

If the sources have the same sign of kurtosis, the
last equation give us that hi,(q1)hje(q2) = 0, Va, q1, ¢2,
and i # j. This hypothesis make that, when ¢ = ¢
then H(q) = PD , where P is a permutation matrix,
and D is a diagonal matrix, see [9]). The result may
be generalized for ¢; # ¢z, and H(qz) = PD' is then
found, where D’ is another diagonal matrix and P is
tlie same permutation matrix. Finally, the filter will
he H(z) = PY_; D(i)z™". So the separation is achieved
up to a permutation and a polynomial diagonal matrix.

4.1 Using z-domain cumulants

The same result can be proved using the generalisation
of cumulant definition in the z domain. For exam-
ple, the fourth order cumulant of S(z) will be defined
as Cumg(S(2)) = ES%(2) — 3E25?%(2). Applying this
definition on z-transform of (10), we may derive the
condition: CumiY(z) = 0 = h,(2)h},(2)B.(2) = 0.
Assuming that M(z) is a column-reduced matrix (see
[6]) and w;;(z) = 1, we can prove that H(z) is a poly-
nomial diagonal matrix up to a permutation.

5 Conclusion

In this paper, we propose a cost function which is the
sum of squared (or absolute value) cross-cumulants:
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Js = Yic; Cum®(yi(n), yi,95,9;) (or Jo = ¥ |

C’um(@/i; YisYis /[/]) l)

o ('umagy is a sufficient cost function for instanta-
neous mixture if sources have the same sign of
kurtosis. The result still holds if the mixture is
corrupted with additive Gaussian noise.

e If the sources are iid and have the same sign of
kurtosis, the result can be generalized to con-
volutive mixture using the simple cost J(n) =
i g Cum?(yi(n), yi(n), y;(n ~ p), y;(n — p)). In
that case, tensorial and Finstein notations are
very convenient to simplify equations.

Experimental results in the case of two sensors and
two sources, were developped in [9] for instantaneous
mixtures and in [13] for convolutive mixtures. Unfor-
tunately, cumulants C'umgy are flat around solutions
and do not lead to very precise results. However, the
theoretical results obtained in this paper could he used
to verify the relevance of solutions provided by a simn-
pler criterion.
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