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Résumé

La plupart des algorithmes adaptatifs pour I’égalisation aveu-
gle ont été proposés et étudiés en ’absence de bruit. Profi-
tant de récents résultats analytiques sur 1’égalisation spatio-
temporelle, nous étudions 'effet du bruit de canal sur les per-
formances de I’égalisation. L’égalisabilité du canal en présence
de bruit est quantifiée en termes de puissance d’erreur entrée
/ sortie. Ceci fournit une borne minimale d’erreur & par-
tir de laquelle une comparaison de la robustesse des perfor-
mances d’algorithmes adaptatifs peut étre effectuée. En parti-
culier, le compromis réalisé par Valgorithme de Godard entre
’égalisation parfaite et Pamplification de la puissance du bruit
sera mis en évidence.

1. INTRODUCTION

The spatio-temporal channel equalization problem consists
on choosing the L x 1 Finite Impulse Response (FIR)
equalizer transfer function (ei(z),..,er(z))" so that its
output y(n) acheives a "good” estimate of the delayed

input” sequence .{n), as displayed on Figure 1, where
(c1(2),...yci (2))T reoresents the L-dimensional channel
transfer function and (w1(n),...,wr(n))" the L-dimensional
channel noise.
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Figure 1: Spatio-Temporal Equalization Scheme

The multidimensional channel model derives from either
temporal or spatial diversity (see [1] for example). Each of
its components is assumed to be FIR with degree less or
equal to ). Recent studies (see [2], [3] for example) show
that under the following conditions,

1. ci(2),...,c(z) share no common zero,

2. each ei(z) (i=1,..,1) is FIR with degree N -1 > Q,
3. s(n) is i.i.d.,

4. no channel noise.

perfect equalization is acheivable. More precisely, any com-
bined channel / equalizer of (@Q+ N)-length impulse response
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Abstract

Most adaptive blind equalization algorithms have been pro-
posed and studied in the noise-free context. Recent analitycal
results on fractionally spaced equalization allow to study the
effect of channel noise on equalization performances. Channel
equalizability in noisy context is measured by the input / out-
put error power. The mean square error gives a lower bound to
which the performances of adaptive algorithms are compared.
More specifically, our study shows how the Constant Modulus
Algorithm (CMA) compromises between perfect equalization
and noise enhancement.

is acheivable. Several adaptive blind (i.e., without knowl-
edge of the input sequence) equalization algorithms have
been derived from this property, [4] or [5] for example.
These algorithms are strongly dependant on conditions 1-
4. An important question is how their performances, and
especially their ability to equalize, are affected when the

previous conditions are no longer met. The relaxation of
condition 1 is analytically evaluated in [6] in terms of in-
put / output error power. The previous algorithms fail
but Fractionally Spaced Equalizer Constant Modulus Al-
gorithm (FSE-CMA, see [1]) performances show some ro-
bustness to this condition. The relaxation of condition 2 is
addressed in [7]. In this paper, our purpose is to study the
effect of suppressing condition 4, while maintening or not
condition 1.

In order to understand the effect of channel noise, we first
introduce the concept of channel equalizability, i.e. the
ability of the channel to be equalized. Equalizability may
be measured by the value of the input / output Minimum
Mean Square Error (MMSE), min.,, E[(y(n)—s(n—v))?], for
a given class of equalizers (here, LN-long FIR filter). The
previously defined MMSE provides a lower bound in the
error power within the class of linear N L-long equalizers.

Organization: In the second section, we recall results on
the channel convolution matrix properties. Equalizability
is introduced in Section 3. In the noisy context, the best
achievable equalizers settings are estimated and the cor-
responding MMSE between the delayed input and output
signal is deduced. In section 4, the effect of noise on the
steady-state input / output MMSE of FSE-CMA is com-
pared to the MMSE lower bound.
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2. CHANNEL CONVOLUTION MATRIX

In this section, we set some notation and recall a few prop-

erties on the channel represented by its convolution matrix.
From the propagation model of Figure 1, one can repre-
sent the global (channel + equalizer) transfer function as

h(z) = ci(z)e1(z) + -+ +cr(2)er(2) (1)
The impulse response h associated to equation (1) is:
h=CTe (2)

where the entries of h are the coefficients of h(z), and the

entries of & are the coefficients of (e;(z),---,er(2))7. C is
the NL x (@ + N) channel convolution matrix defined by
the coefficients of &(z) = (c1(z),....,cL(2)) " as:

c1(0)  e1(1) - <1(Q) o o
cp(0)  er (1) .. 1 (@) 0 0
0 ) e L @ o 0
C. o er (0) ez (1) . €L (@) o 0
[ o - 0 @ g . cl(Q)J
0 . o L0 er(l) .. er(Q)

The range of C" determines achievable channel-equalizer
impulse responses in the noise-free context.

Under conditions 1-2, C has been proved to be full
column-rank, see [8], so that any (N + Q)-length impulse
response h is achievable, in particular canonical vectors,
denoted h,. Furthermore, as soon as N > @, there exist a
(NL— (N + @))-dimensional subspace of seetings of & corre-
sponding to the same value of k. This non-uniqueness may
lead to numerical problems ([9]) when updating adaptive
algorithms.

Under condition 1, with all ck(z) having Zo common
zeros, C has a rank equal to (@ — Zo + N) ([10]). C
admits a factorization as C = CC, where Co is the
(@ — 20+ N)x(Q+ N) convolution matrix associated to the
scalar polynomial corresponding to the Z, common zeros
(co(2)), and where C is the (NL) x (Q — Zo + N) convolution
matrix associated to the remaining part of the multichan-
nel transfer function. Note that C is full column-rank, but
Co is full row-rank. The equalizability under condition 1, 3
and 4 is also equivalent to that of the scalar channel transfer
function co(z), see [6].

Our main concern in the noisy channel context is noise
enhancement since the additive noise is filtered by the
equalizer only, the norm of which is inversely proportional
to the difference between subchannels zeros under condi-
tions 1-2. We will show in the following that equalizers
can compromise between achieving a value of h close to the
noise-free ideal k, and a small norm of &.

3. EQUALIZABILITY

In this section, we express the best achievable equalizer in
terms of Minimum Mean Square Error (MMSE) between
the equalizer output and a delayed input sequence.

From the independance between the source signal and
noise, the input / output mean square error writes as

f&) = Ely(n) - s(n —v))’]/ Bls* (n)]

= ||ICTé-(0...010...0)T|]> + &7 Ru &

T

where ||.|| denotes the euclidian norm and E[.] stands for
the mean expectation operator. R, is the covariance matrix
of the noise vector (wi(n), .., wi(n—=N+1),...,w.(n), .., wr(n—
N +1))7. The minimization of (3) can thus be viewed as
the minimization of the noiseless cost-function under a con-
straint on the equalizer norm in the noise covariance ma-
trix sense. &7 T@gﬂ—)]é’, a weighted squared-norm of &, can
be viewed as a smoothing factor of the cost-function.

The MMSE is achieved for € satisfying

T 1 i,
(CC + WRw) é¢=Ch, (4)

where h, = (0...010...0)" is a (N + Q)-long vector with all
components but the (v + 1)'* set to zero. Furthermore, in
the contrary of the noise free case, R, positive-definiteness
increases the condition number of the right-handside matrix
in (4) proportionally to the noise to signal power. This
yields to the unicity of the solution and takes care of the
numerical problems in the noise-free case, as soon as the
noise power is large enough.

A first question is then when does equation (4) admit
solutions ? Then, one may want to know the remaining
MMSE, and the quantity of noise enhancement.

Under conditions 1, 2, 3:

In the noisy case and under conditions 1-2, CTC is full
rank. Therefore, (4) is equivalent to

T Tern—1 T 1 o=
(C +(C C)~'C ——__E[s2(n)]Rw> h. (5)

The proof of this result and of the ones below involves
only the matrix inversion lemma and some straightforward
algebra, they are omitted. The left-handside matrix still
being full row-rank, the equation admits solutions.

The noise to input power is defined by ~+ =
trace(Ryw)/(NLE[s%]), so that when the noise is temporally
and spatially white R, = vI. In the white noise case and for
small enough v, the global channel equalizer setting h that
corresponds to a solution of (4) admits an approximation
in terms of v as

h=nh, — 'y(CTC)_lh,, + o(7)

This expression shows that noise introduces some Inter-
Symbol Interference (ISI) with respect to the optimal noise-
free h,. The MMSE induced by these impulse responses,
f(&) =|lh = h.||* 4+ v]|é]|® can also be approximated from (3)
by

F(&) = A&l + o(v)

where €, 1s the 0 order approximation (with respect to )
of the solution of (4). Since there is a (N(L - 1) — Q)-
dimensional subspace of settings corresponding to each
value of h, the one of interest value here is the mini-
mal norm setting amoung the subspace corresponding to
h, namely & = C(CTC)~'h. Note that this setting is
the projection of any & such as h = C'¢& on the sub-
space spanned by the columns of C. A first order ap-
proximation of &,, now unique solution of (4), is given by

& = C(CTC) A, — vC(CTC)?h, + o(y). Thus,
£(&) = 7R, (CTC) hy + of7) (6)

This indicates that the delay of the combined channel-
equalizer achieving the MMSE is the one minimizing the



Rayleigh ratio h) (C"C)~'h, over v = 1,..., N + Q. Unfor-
tunatly, it is of course impossible to constraint the delay to
the optimal one.

Note that the output noise to output useful signal power

ratio, v||€]?/i|k||® has the same first order approximation
(with respect to ) as the MMSE (6).

Next, we simulate the best achievable MMSE and corre-
sponding channel-equalizer impulse response A versus SNR
( SNR= 10Logio~y dB). These simulations were computed in
2-dimensional chanel model where each transfer function is
discribed by its zeros. The zeros of ¢1(z) are —1.4 and 0.6,
the zeros of cz(z) are —0.4 and 1.1. In Figure 2, we can see
that, even for a small SNR, the taps of k are very close to
the noise-free value h,. In Figure 3, we want to validate
expression (6). We compare the theorical MMSE (exactly
calculated from (5)) to the approximation in (6). The sim-
ulation displays the accuarcy of the approximation even for
a small SNR.

taps of h versus SNR
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Figure 2: h versus SNR
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Figure 3: MMSE versus SNR

Under conditions 2, 3:

If condition 1 is suppressed, the noiseless cost-function may
no longer be reduced to zero ([1]), since the range of c’
is a (N + Q@ — Zo)-dimensional subspace in which none of
the h, may lay. From the factorization of the convolution
matrix C = CC,, with CoCy and C'C being full rank,
the solutions of (4) satisfy

T Tym1, T =1~ T 1 L
(Q +(CoCy )™ H(C O)7'C me)e
= (CoCq)~'Coh,
Since C is full-column rank, there exist a solution to this

equation the uniqueness of which is determined by the noise
to signal power as in the previous case. For a white noise,
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the new setting minimizing the MMSE admits an approxi-
mation in terms of v as

B =Cq(CoCq)'Coh,
— 7G4 (CoCq)™H(CTC)H(CoCq )™ Cohy + o(7) (7)

Note that I, = Cg (CoCq)~'Cy is the orthogonal pro-
jector on the range of Cq, so that the non-avoidable error
(in noise-free conditions) ||(I — Ilo)h.||* corresponds to the
distance between k, and the range of Co.

Note that ||h—hk.||* = ||(I=Tlo)h.||*+o(7). Moreover, since
the minimal norm & corresponding to a given h is equal to
&= C(C"C)(CoCy )~ Coh, the MMSE corresponding to
(7) can be approximated by

£&) =111 - Mo)hs|®
+  yRTCq (CoCq ) HCTC)H(CoCq ) ' Cohu + o(7)

Thus, the MMSE corresponds to the delay v compro-
mizing between the minimization of ||(I — Ilo)k.||* (or in
other terms maximization of k] Ilok,) and the minimiza-
tion of hJAJ(CTC) Aok, weighted by v, where Ao =
(CoCq)~1Co denotes a generalized pseudoinverse of Co.
Of course, since one doesn’t know how to constraint the
delay, the lower norm & may not be reached, so that the
noice enhancement may be much greater.

The main concern here is noise enhancement, i.e., the
ratio between output and input noise to signal power ratio.
The output noise to signal power ratio, denoted I', equals
e /2. The output noise to signal power corresponding

to the MMSE solution of (7) is given by
T = vk, Ag (C7C)7 Aok /R Ag Aoku + o(7)

The main contribution can be viewed as the Rayleigh ratio
of (CTC)™? in the metric transformed by Ao.

Moreover, when some zeros are ”close”, the noiseless ideal
setting has a large norm which would induces noise en-
hancement, still the smoothing factor balance the equalizer
norm and thus the noise enhancement.

4. ACHIEVABLE PERFORMANCES

Given the lower bound of the input / output error power
in terms of MMSE, we want to study the achievable per-
formances of adaptive algorithms.

First, note that for the most popular equalization al-
gorithm with training: Least Mean Square (LMS) algo-
rithm (which is the stochastic gradient descent algorithm
build from the MSE cost-function) the possible convergence
points are the minima of the MSE cost-function f(&). Its
best acheivable performance are also these studied above.
This algorithm is implemented in a Fractionally Spaced
Equalizer setting, and called FSE-LMS.

In order to study blind adaptive algorithms, we set a
general framework which is developped in the specific case
FSE-CMA. FSE-CMA derives from the Constant Modu-
lus Algorithm (see [11],[12]) implemented in a Fractionally
Spaced case, see ([1]). The FSE-CMA updating equation is

&(n +1) = &(n) + py(n)(r2 — y’ (n)) B(n) (8)

where ﬁ(n)ﬁis the NL-dimensional received signal and
y(n) = & (n)R(n) is the equalizer output. r» = E[s*]/E[s*].
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9(€) = E [(r2 — ¥*(n))?] is the cost-function to be minimized.
It can be proved ([13]) that the FSE-CMA cost-function
under noisy conditions can be writen as the noise-free cost-
function, denoted go(¢€), added to a term equal to

9+(&) = 2l (23)1A)1° = o) + 391lelf?) 9)

This assumes only condition 3 and independance between
the source and noise signals. The additional term g. (&) de-
pends on the equalizer norm second and fourth order power.
As for LMS, it can be viewed as a smoothing factor of the
same power as the noise-free cost-function go(&). There-
fore, one should expect the noise to affect the steady-state
performances in similar manner than for LMS. However,
one should wonder how much additional MSE due to noise
will appear in the case of FSE-CMA compared to that of
FSE-LMS.

Simulations :

We compare the FSE-LMS and the FSE-CMA: (a) within
condition 1, (b) without condition 1. We consider a 2-
dimensional channel and a BPSK input signal (s(n) = £1).
The model for (a) is given above. For (b), the zeros of ¢;(z)
are (—1.4, —0.4), the zeros of c2(z) are (1.1, —0.4). Simula-
tions use a step-size equal to 107*, and the average of the
MMSE at steady-state is estimated over 20000 iterations.
In order to check only the lower MSE (we don’t want to
deal with eventual local minima here), the equalizers are
initialized very close to the global minima settings. We
consider a 4-taps equalizer.

The following curves display MMSE for FSE-LMS and
FSE-CMA tversus SNR. We see that FSE-LMS and FSE-
CMA have very similar values in both cases. In case (a),
Figure 4 shows that MMSE asymptotically converges to
zero. However, in the case of common zero (b}, Figure 5,
MMSE converges to the lower non-avoidable error bound,
which depends of the length of the equalizer.

Whitout common zeros - FSE-LMS --: FSE-CMA
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Figure 4: MMSE in case(a)
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Figure 5: MMSE in case(b)

5. CONCLUSION

Equalizability : the best acheivable equalizer for a given
channel, equalizer length and channel noise has been eval-
uated in terms of MMSE. In order to compare adaptive
algorithms, we compare their MMSE to the equalizability
power bound. A first study of FSE-CMA with respect to
MMSE has been presented. It shows that the MMSE of
FSE-CMA is very close to the optimal power bound. How-
ever, many questions remain. In particular, the effect of
equalizer length on the MMSE of different algorithms is
to be checked. Futhermore, our study concerns only the .
mean steady-state value and should be extended to MSE
resulting from stochastic jitter around the mean solution.
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