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ABSTRACT

In this paper, the stochastic and deterministic Cramer-
Rao Bounds (CRB’s) on Direction-Of-Arrival (DOA)
estimation accuracy in the presence of uncorrelated
unknown noise field are derived. The presented CRB’s
allow to provide significant insights into the case of
unknown sensor noise. In particular, it is shown that
sensors with relatively powerful noises have a weak
influence on the potential DOA estimation accuracy.

A powerful tool for the study of potential DOA esti-
mation performance in sensor arrays is the CRB show-
ing the lower bound of estimation errors [1], [2]. The
importance of the CRB is due to the well known fact
that several DOA estimators like MUSIC [1], MODE
[2], and stochastic ML method [3], [4] attain CRB un-
der various conditions [1], [2].

The general expressions for CRB on DOA estima-
tion in a semsor array in the case of identical noise
powers were derived in {1], [2] both for deterministic
and stochastic signal models. However, the assump-
tion of equal sensor noise powers is often unrealistic
[5] because of various nonidealities of receiving chan-
nels [6]. Moreover, often in practice it is impossible to
measure the noise powers in the absence of signal and
the assumption of @ priori known sensor noise powers
is unrealistic too. In this paper we present the expres-
sions for stochastic and deterministic CRB’s on DOA
estimation for a more realistic case of uncorrelated and
unknown noise field. For simplicity, the single source
scenario is considered. The analysis of CRB’s behav-
ior is presented, showing some peculiarities inherent
in the case of nonequal sensor noise powers.

2. DATA MODELS

Consider a narrow-band sensor array of n sensors and
of arbitrary geometry. Let single source impinges on
the array from direction §. Hence, the n X 1 vector of
complex array outputs can be modeled as [1], [2]:

z(t) = s(t)a + n(t), t=1,2,...,N (1)

where N is the number of array data snapshots avail-
able, @ is the n X 1 source steering vector, s(t) is the
source waveform, and n(2) is the n x 1 vector of addi-
tive sensor noise. The noise is assumed to be station-
ary, statistically independent, and zero-mean complex
Gaussian vector with the n X n diagonal spatial co-
variance matrix

Q = E{n(t)nH(t)} = dia’g{plap?., se. ,pn} (2)

where p; is an unknown noise power in i-th sensor, H
denotes Hermitian transpose.

In stochastic case the signal waveform is assumed
to be stationary, zero-mean complex Gaussian quan-
tity [2]. Therefore, in this case:

z(t) ~ NY (0, R) (3)
where
R =Q+ psaa (4)

and ps = E{Js(t)[2}.

In deterministic case the signal waveform is as-
sumed to be a deterministic process, i.e., to remain
fixed from realization to realization but to vary ran-
domly from snapshot to snapshot [2], [7]. In other
words, under deterministic assumption:

o(t) ~ Ny (s(t)a, Q) (5)

The data models (3) and (5) lead to different CRB’s
on DOA estimation.



246

3. DERIVATION OF CRAMER-RAO
BOUNDS

It is well known that for any unbiased estimate & of
vector parameter o the CRB is given by the diago-
nal elements of the inverted Fisher information matrix
and it shows the lower bound of parameter estimation
errors, i.e.:
var(&;) > CRB(&;)

where “hat” sign denotes estimate.

For stochastic model the vector of unknown pa-
rameters can be represented as:

a:(w,pS’pl’-'-,pn)T (6)

while for deterministic model
a = (w, Re(s(1)),...,Re(s(N)),

Im(s(1)),...,Im(s(N)),p1,-. .,pn)T (7)
where w = sin § and T denotes transpose.

The use of the Bangs formula [2] together with
(2)-(7) allows to calculate the (n 4+ 2) x (n + 2) and
the (2N +n +1) X (2N + n + 1) Fisher information
matrices corresponding to the stochastic and deter-
ministic models, respectively. Fortunately, for both
cases these matrices have a structure which enables
to inverse them analytically and to find the explicit
expressions for CRB. After lengthy derivations includ-
ing such matrix inversion, we get the following expres-
sions for CRB’s on DOA estimation for stochastic and
deterministic signal models, respectively:

CRBsT(@) = {1+psa’Q@~'a}/
{2Np§la”Qaa’ DQ ™' Da - (a¥ DQ™'a)?]} (8)
CRBper(@) = {a¥Q'a}/
{2Npsla"Q 'aa” DQ™' Da - (a" DQ7'a)*]} (9)
where the n X n diagonal matrix

2r
A

the n x 1 steering vector
a = (lai|exp{j(2r/N)dw},...
< lanlexp{(2n/N)dw )T (11)

A is wavelength, d; is the coordinate of i-th sensor,
and

D = diag{dl,dz,...,dn} (10)

1 N
s = = 3 1s(0)P (12)

It is easy to verify that in the special case of identical
noise powers and of uniform linear array the expres-
sions (8) and (9) coincide with the simple familiar
expressions (see, for example, [7]).

4. ANALYSIS AND COMPARISON
OF CRAMER-RAO BOUNDS

Let us analyse the relationship between stochastic and
deterministic CRB’s via comparison (8) and (9). As-
sume that the number of snapshots is large, i.e., N >
1. In this case one can suppose asymptotically that
ps = Ps. Under this assumption, the deterministic
CRB is always lower than the stochastic one and the
difference between these two bounds becomes negligi-
ble when

psaf’Qla > 1 (13)

Equation (13) is not more than the high Signal-to-
Noise Ratio (SNR) condition. Therefore, in the case
of nonidentical sensor noise powers the SNR in a whole
array can be defined as

SNR = psa?’Q~'a (14)

Assuming for simplicity that |a;] = 1,
rewrite (14) as

vt=1,2,...,m,

SNR = pszgj = Y SNR,
=1 i=1

where SNR,; = ps/p; is SNR in the i-th sensor.

In the low SNR case (i.e., when SNR « 1), the re-
lationship between stochastic and deterministic CRB
is given by:

CRBpgr(©) = SNR CRBst(w) (15)

Therefore, the ratio between the deterministic and
stochastic CRB decreases as the SNR decreases. These
results reconfirm the results of Stoica and Nehorai, ob-
tained in [2] for a more simple case of identical noise
powers but for arbitrary number of sources.

If the number of snapshots is small, ps and ps may
essentially differ and in some situations with relatively
high SNR it can happen that the stochastic CRB is
even lower that the deterministic one. It depends on
the temporal behaviour of the deterministic process

s(t).

4.1 Case of distinguished sensors
with powerful noises

One of the most interesting questions appearing when
the case of nonidentical sensor noises is analysed, is
the following: how depends the potential DOA esti-
mation accuracy on the sensors with relatively pow-
erful noises?

In order to answer this question, let us analyse
the special case when several sensors have relatively
powerful noises as compared with other sensors. In



other words, let the noise powers in arbitrary K sen-
sors (K < n—1) with the numbers l4,...,[x are much
higher than that in the other n — K sensors, i.e.:

m=1,..., K,

Pl > Pk k..., 0 (16)

" Then, the matrix @~ can be divided in two compo-
nents:

Q7' = P+ Ppa_k (17

where P) is formed from the matrix Q=1 by re-
placing n — K diagonal elements, corresponding to
the sensors with relatively low noise powers, by zeros.
In turn, P[,_g) represents the matrix Q1! after re-
placing the diagonal elements, corresponding to dis-
tinguished K sensors, by zeros. From (16) we have
that || Pig|| < || Pfa-kjll, and, therefore,

afQla ~ a,HP[n_K]a (18)
a’DQ 'a ~ a DP|,_yja (19)
e DQ™'Da ~ a" DP|,_yDa (20)

From (18)-(20) it follows that the sensors with rel-

atively powerful noises have asymptotically no influ-

ence on the stochastic and deterministic CRB’s (8),

(9) and on performance of asymptotically efficient DOA
estimators. It shows that DOA estimators that are

asymptotically efficient in the case considered, esti-

mate the noise powers as well and take this informa-

tion into account when estimating DOA’s.

5. CONCLUSION

The stochastic and deterministic CRB’s on DOA es-
timation accuracy in the presence of uncorrelated un-
known noise field are derived. The consideration was
limited by a single source scenario. The analysis of
the bounds obtained shows that they are related in a
very simple manner. It is shown that the sensors with
relatively powerful noises have weak influence on the
potential DOA estimation accuracy. This fact provide
the additive insights into DOA estimation problem in
the case of different sensor noises.
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