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RESUME

Dans cet article nous abordons le probleme de la synthése
de systéme TFAC pour la détection de cibles noyés dan-
s un fouillis non-gaussienne. Nous présenton un systéme
génerale de seuillage adaptatif, dans ’hypothése que la loi
de répartition du fouillis est du type ”location-scale”. La
strategie utilisée est 1’etablissement d’une carte de fouillis
aprés le filtrage spatial de un certain nombre de cellules de
résolution. Le calcule des performances démontre que le
recepteur est tres robuste aussi pour cibles étendu.

I. INTRODUCTION

An increasing attention has been devoted in the last decade
to the development of radar system achieving improved per-
formance in non Gaussian environment. This, in turn, pos-
es two problems: the modelization of the stochastic return
from the additive disturbance and the development of ad-
vanced processing schemes for detection in the presence of a
given disturbance model. Moreover, systems often operate
in changeable environments, where the cumulative distri-
bution function of the noise is modeled as a member of a
multiparametric family with a-priori unknown parameters.

Several procedures have been proposed recently to main-
tain a Constant False Alarm Rate (CFAR) in the presence
of non—Gaussian, time—varying environments. The Sliding—
Window (SW) based procedures achieve estimates of the
clutter parameters by processing a set of samples from adja-
cent range cells; in this class we find either monoparametric
[1,2] or biparametric [3,4] procedures, suited for adaptive
detection in non-Gaussian environment. The main draw-
back of these procedures is that the system performance
impairs in the presence of abrupt variations in the statisti-
cal properties of the returns across the reference set.

On a different concept rely the Clutter-Map (CM) based
CFAR procedures, wherein the estimate of the relevant dis-
tributional parameters is performed by suitably processing
the returns from several range cells, as observed in all the
scans up to the current one. Intuitively, one expects that
CM-CFARSs, suffer from range—spread targets or from point
targets persisting on the same map cell for several scans [5].
This situation tipically produces an overestimation of the
detection threshold and, consequently, a decreased detec-
tion probability (masking effect) [6].

We propose here a new biparametric CFAR proce-
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dure based on a hybrid space-time processing; CFAR
is achieved whenever the amplitude probability density
function (apdf) of the clutter returns, possibly upon a
parameter-independent transformation, is of the Location—
Scale (LS) type. The procedure is applicable to a large
class of input distributions and proper setting of the system
parameters may confer to the detector robustness against
non-homogeneities in the estimation sample.

II. AcHIEVING CFAR AGAINST LS-DISTRIBUTIONS

When the clutter is assumed to depend on two unknown
parameters, o and 3 say, the detection rule can be expressed
in the form

Y Z T(apB) (1)

where Y is the envelope of the return from the range cel-
1 being tested and T(&, ), is a suitable adaptation law,
fulfilling the condition

Pr{Y > 7(@,5)|Ho} = Pra 2

regardless the values of the parameters o and £.

The problem of finding the estimators of the distributional
parameters o and 3 satisfying the above condition admits
a general solution if the clutter apdf is assumed to be of the
LS type. The definition of the LS property can be given as
follows: A family of random variables Y is said to be of LS
type with location parameter 8y € R and scale parameter
fs > 0, if any variate in the family can be obtained by
linearly transforming a generating - variate Yp, defined as
the member with 8 = 0 and 65 = 1, namely if Y = 0sYy +
6r. In the following we adopt the shorthand notation Y ~
LS(0z,8s) to indicate that Y is of LS type with parameters
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81, and fs. In the derivation of the CFAR detector we will
exploit some properties of the LS distributions; we report
here the most relevant:

P1 Ranking

IfY; ¢« = 1,...N is a set of N, identically dis-
tributed LS(fL,fs) variates, then the ranked observations
Yy, ..., Yy, with Y1) < Yo Vi > 1 are themselves

LS(61,85).

P2 Closure under linear transformations

Linearly filtering a sequence y(n) ~ LS(fr,60s), with one
and the same marginal pdf, yields a sequence v(n) ~
LS(H(0)0L,0s) of identically distributed variates, with
H(0) the de gain of the filter.

P3 Quantiles

Let Y ~ LS(0z,8s), then its a-quantile Y,, namely the so-
lution to the equation Pr{Y < Y,} = « can be represented
as Yy = 05Ypq + 01 where Yy, denotes the a-quantile of
the standard distribution.

The expression for Y, suggests adopting the structure
T(n) = B [z(n)]y + BL[2(n)] 3)

for the adaptive threshold. Consequently, the actual FAR
Y = O1[z(n)]

can be written as
= > v|Ho (4)
Os[z(n)] }

which implies that CFAR is ensured if the test statistic

PFA :PI‘{

Y — B [z(n)]
bs[z(n)]

is ancillary under Hy, namely if its distribution is inde-
pendent of the values of the parameters. Such a property
is achieved if the estimates of the location and scale pa-
rameters are equivariani, namely if for any ¢ € [0, oo and
d €] — o0, |, the equations

b1 [cz(n) + d]
Os[cz(n) +d] =
hold. Based on (6), we have

()

cbpz(n)] + d

i

. (6)
cbs(z(n)]

Y = 0ufz(n)] _ Yo = rlzo(n)]
Bs(2(n)] 0s{z0(n)]

indicating that the statistic (5) is one and the same,
whether it is computed based on the original data (Y, z(n))
or on the normalized data (Yo, 20(n)).

As outlined in the previous section, the resilience to mask-
ing effect from slow targets can be achieved by properly pro-
cessing the samples in the map-cell. It is understood that
range-spread targets affect the homogeneity of the estima-
tion sample; on the other hand, for high signal-to-clutter
ratios (as it is the case for coastal radars where the tar-
get radar cross section is typically very large) the samples
containing echoes from the target exceed the samples from
clear cells with high probability. Thus, some resilience a-
gainst self-masking from range-spread targets is expected
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Figure 1. General architecture of a CM-CFAR.
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Figure 2. Equivariant estimation of the location and scale pa-
rameters

if preliminary observation censoring is performed, namely
if the top-rank statistics are discarded prior to estimating
the adaptive threshold.

Summing up, the general architecture of a CM-CFAR sys-
tem against clutter with LS-distribution is depicted in Fig-
ure 1 where y(n) is the N —dimensional set of returns form-
ing the map cell and z(n) = y)(n) is the k—th order statis-
tic at the nth scan. The estimation block and the combiner
are described with more details in Figure 2. With reference
to such a figure, it is possible to demonstrate that the up-
per branch provides an equivariant estimate of the location
parameter if Hy (0) = 1 while the lower branch provides an
equivariant estimate of the scale parameter if H5(0) = 0.
In our design H;(v) is a single-pole, single-zero lowpass IIR
filter, Ho(v) is a backward difference and Hs(v) is a single-
pole lowpass AR filter. If the poles of H;(v) and Hz(v) are
located at the same point, a say, it is possible to demon-
strate that the variance of the estimators vanishes as a — 1,
i.e. that the system achieves a perfect estimate of the noise
parameters under this limiting situation.

II1. ExaMpPLE: CM-CFAR AGAINST WEIBULL CLUTTER

A widely accepted model for the clutter apdf relies to the
Weibull family of distributions, whose cdf is

Fx|m,(z) = 1—exp [— (g)ﬁ] z>0, >0, >0 (8)

which is not of a LS type. However, if the received vari-
ate undergoes a logarithmic transformation, under Hy, the
Weibull distribution is converted into a Gumbel variate,
whose CDF is

Fyim,(y) =1 —exp{—exp [B(y —Ina)]}  (9)
which is LS(In e, 1/5).

3.1 FAR regulation



The threshold multiplier v ensuring a preassigned Prja is
implicitely defined by the equation

:  Pr { y"(";s‘(:i(’;)" DI 7IH0} =Pra  (10)

whose solution requires the first-order characterization of
the normalized test statistic

n)— §L(n -1)
gs(n -1

Y (m) = 4 (11)
Since Y(n) is ancillary under Hy, v is one and the same
independent of the values of the location and scale param-
eters of y;(n) and, eventually, of the scale and the shape
parameters of the clutter apdf. Consequently, with no loss
of generality, we can assume 8, = 0 and 65 = 1, imply-
ing « = f = 1. The analytical evaluation of the threshold
multiplier turns out to be mathematically unwieldy; thus
we present here a technique for approximating the high-
amplitude tail of the pdf of the test statistic by a suitable
function depending on some parameters. Assume, at first,
that perfect estimates of the location and scale parameters
are available; in this case the estimated parameters coin-
cides with their expectations E[fL] = por and E{fs] = nox
and we have

1—- Fy(z) = exp(—e"“"”"'""") .

(12)

However, equation (12) applies only in the limiting case
of @ — 1, for intermediate situations we can exploit the
limiting form of (12)

1 4 N. °
exp(—e’lo“:+/4ok) =Nlim°(J [1+-ﬁ- <1+n0_kﬁ_ﬂ)_k_) ]
e~ e .
(13)

where N, is defined as N, = (1 + a)/(1l — a), as a hint
for envisaging the approximating family. Consequently, we
assume

1

[1+,,}vc (1+ -’Iﬂuﬁ%é)m}

F(z)= e £>>0. (14)

In the equation above § = 6(N., k) and v = v(N,, k) are
suitable parameters to be inferred so as to minimize a given
measure of discrepancy between the true and the approxi-
mating distribution. An example of optimization procedure
relies on the following steps:

e Numerical inversion of (14) and choice of an interval
Ppa1, Pras such that the estimation, via Monte-Carlo
counting, of the corresponding threshold multiplier requires
an acceptable number of trials;

e Determination, via computer simulations, of the true
threshold multipliers, namely of the (1 — Pp4)—quantiles
of the empirical distributions, for Pra1 < Pra < Ppas;

o Selection of ¥ and é so as to minimize the mean square
error between the quantiles of the empirical and the ap-
proximating distributions in the above interval of Pp4.

The applicability of this procedure for extrapolation pur-
poses, is demonstrated in Figure 3 wherein the empirical

0. T T

LI O B e B A S B M B B B o B

0.69969 |

0.9699 |

F(y) 0999

089 4

Figure 3. High-amplitude tail of the empirical and of the approximat-
ing CDF for Weibull background; N =12, k=7, a = 0.9.

CDF of the test statistic, evaluated for N = 12 and k = 7
is contrasted with the corresponding approximator: results
show that the threshold multipliers may be computed based
on (14) at a good confidence level.

3.2 Detection perfoermance for point-like targets

Assume that all of the samples in the map cell, up to the
(n — 1)th scan, have one and the same distribution; at the
nth scan, a useful target whose amplitude A4 is assumed to
fluctuate according to a Rayleigh pdf, i.e.:

fa(z) = = exp (— ”2), z>0 (15)

a4 20%
enters the map cell, occupying one of the range cells therein.
The detection probability is defined as

Pp = Pr{y(n) > T(n—1)|H } (16)
with y;(n) the clutter-plus-signal envelope, as observed at
the output of the logarithmic amplifier. Exact evaluation
of the above probability requires the knowledge of the first-
order pdfs of both y;(n) and T(n — 1) whose closed-form
expression is not available. Thus, we resorted to comput-
er simnulation for performance evaluation. Detection per-

formance under Weibull distributed clutter are shown in
Figure 4 versus the signal-to-noise ratio

20%

= BT+ 2/8) (17)
assuming that the 7th Order Statistic (k = 7) is singled out
and used for estimation purposes. We accounted for the t-
wo cases of 3 = 1 and 8 = 2 in order to elicit the effect of
the clutter spikyness: it can be easily noticed that higher
tails of the noise distribution cause worse performance. The
curves are indexed through the parameter K, — the num-
ber of persistence scans of the target —; the performance
of the fixed-threshold detector is also reported for compar-
ison purposes. Figure show that the CFAR loss is not very
sensitive to K, an evidence that the system is practically
immune to masking effect from slow targets.
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Figure 4. Detection performance of the CM-CFAR for point-like tar.
gets in Weibull background:

N=12,Pry =10"% K.=1,4,16,a =09,k = 7;

solid: 8 = 2; dashed: 8 = 1; dot-dash: fixed-threshold detector

3.8 Performance in the presence of extended and multiple
targets

Now we consider the case of a range-spread target whose
extension in the range direction is longer than a single cell;
this may be the case as a slow, large ship enters the map
cell, yielding strong returns in a significant number of range
cells surrounding the cell being tested. The extended nature
of the target results in a close-to-one correlation between
the amplitudes of the target component of the returns.
The detection performance of the system in the presence of
extended targets are shown in Figure 5 where a target ex-
tension K, = 3 is simulated. We observe that the system is
still effective in combating the self-masking effect, but the
CFAR loss is larger than for a point target. The compan-
ion case where the primary target, assumed point-like, is in
close proximity to two spurious targets, themselves point-
like, is also of interest. We consider here the limiting case
of completely independent echoes: all the intermediate in-
stances of target echoes correlation should lay between the
two aforementioned cases.

After running the simulations, we noticed that, as the sig-
nal to interference ratio, equals the signal to noise ratio,
the performance reproduces that of a range-spread target
whose extension equals the number of interfering targets,
an evidence that the target correlation does not have any
remarkable effect on the system performance.

V. CONCLUDING REMARKS

In this paper we have introduced a new clutter-map CFAR
procedure, aimed at detecting range-spread targets in non-
Gaussian clutter with unknown distributional parameters.
The system relies on a combination of time and space fil-
tering, in the sense that, at each scan, it singles out the
k—th order statistic from an N —dimensional sample, rep-
resenting the clutter returns in the range cells forming the
map cell. The clutter parameters are suitably estimated by
time-processing these observations on a scan-by-scan ba-

100 vy ey —TTEEs s
[ o ]
Vi
- e E
vyl
0.80 - v -
i R
L Y
N / / // -4
L // 7/ g
080 |- !/ e L
/ 4
Py 4
040 | B
020 -
" g .
~ 1
0.00 L T OROy--1= o W SN W SN VAN NS SN ST SN SN AR T SN TN O ST ST TN WO TO00 SO0 T ST
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70,00
P
Figurc 5. Detection performance for range-spread persisting targets

in Weibull background:
N=12,Pps =105 K, =3, Ks=1,4,16,a = 0.9, k = 7;
solid: B = 2; dashed; 8 = 1.

sis and the adaptive threshold is eventually delivered. The
system admits the size N of the clutter map, the rank k& of
the order statistic and the location of the pole of the lin-
ear filters as “free” parameters to be chosen, according to
the environment nature, as a compromise between the con-
flicting requirements of on-line tracking of clutter variations
and small CFAR loss.

The statistical analysis confirms that the system achieves
satisfactory performance in the presence of slow targets
with the understanding that a masking effect from extend-
ed targets is prevented only if the censoring depth from
the upper end of the estimation sample at least equals the
number of range cells occupied by the target.
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