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ABSTRACT

The popular spatial smoothing technique is consid-
ered. We show via the covariance matrix eigenvalue
analysis the existence of simple suboptimal rule for
choosing of the subarray dimension in a practically
important situation of two coherent equipower closely
spaced sources. This rule has been found by maxi-
mizing the distance between the signal subspace and
the noise subspace eigenvalues of spatially smoothed
covariance matrix and it does not require any a prior{
information about the signal source parameters.

1. INTRODUCTION

The spatial coherence between signal sources is known
to considerably decrease the performance of majority
of high-resolution direction finding methods. The well
known spatial smoothing preprocessing technique [1],
[2], allowing one to remove the signal coherence and to
improve the performance of high-resolution methods
in the coherent environment, partitions the total uni-
form linear array (ULA) of n sensors into k overlapped
subarrays with the dimension m = n~k+1 and then
generates the average of subarray output covariance
matrices. In the case of the fixed number of sensors
of a total array the dimension of a subarray can be
considered as a free parameter of the spatial smooth-
ing technique and, if the number of signal sources is
small, this parameter is usually chosen from a compro-

mise between the potential spatial resolution and the.

decorrelation effect. Actually, if the subarray dimen-
sion is small (i.e, the number of subarrays is large),
a very good decorrelation can be achieved, while the
potential spatial resolution becomes poor due to the
small size of working aperture. In the opposite case,
when the subarray dimension is large (i.e., number of
subarrays is small), one can achieve a high potential

resolution but the decorrelation effect may be unsatis-
factory. Thus, the optimal subarray dimension exists,
providing the best effectiveness of the spatial smooth-
ing technique for a given dimension of the total array.
Generally, the optimal subarray size depends on the
source coordinates and on the relative phase between
the sources which cannot be known a priori. But in
some practically important asymptotic cases the op-
timal subarray size can be independent of the source
parameters. In this paper (see also [3]) we show this
fact and derive the optimal dimension of subarray for
the asymptotic case of two coherent equipower closely
spaced sources using the expressions for covariance
matrix eigenvalues [4], [5].

2. COVARIANCE MATRIX EIGENVALUES

Consider a ULA of n sensors. The n X n covariance
matrix of array outputs can be expressed as

R=ASA" 4 oI (1)

where I is the identity matrix, o2 is the noise variance,
H denotes the Hermitian transpose,

A =[ay,as,...,a,) (2)

is the n X ¢ matrix of wavefront vectors of ¢ (¢ < n)
signal sources, S is the ¢ X ¢ covariance matrix of
signal waveforms. The ith signal wavefront is given
by a n X 1 vector

a; = (ej%’ld(1-(n+1)/2)sina;’ej%id(z—(nﬂ)/z)sino.- veen,

el Zd(n—(n+1)/2)sin6; )F (3)

where A is the wavelength, d denotes the interelement
spacing and T denotes the transpose.
The elements of the covariance matrix S are given
by:
Sa=oiopa,  l=1,2,...,q (4)
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where p; = |pal exp{jdu} is the complex coefficient
of mutual correlation between ith and /th source and
o? is the variance of the waveform of the ith source.
The m X m spatially smoothed covariance matrix

can be expressed as [2]:

~ ~ o~ o~ H 2

R=ASA" +o0°I (5)
Here A is the m X ¢ matrix of subarray wavefront
vectors:

-,aq] (6)

and the m x 1 subarray vector of the ith wavefront
differs from (3) only by its reduced dimension:

A = [&1,&2,..

(eJAd(l (m+1)/2)sin6; 6'7 Ed(2- (m+1)/2)sm9

8‘7 Ld(m~(m+1)/2)sin6; )T

(7)
The elements of the g x ¢ spatially smoothed covari-
ance matrix of signal waveforms S are given by:

Si=oiopa, il1=12,...,q (8)
where g = |pa| exp{jvu} is the complex coefficient
of mutual correlation between ¢th and {th source after
the spatial smoothing. It is easy to show that (see [2],
[4], for example):

e_'i(-trd/z\) (k—1)(sin8;—sin 6;)

pia = paga(k) (9)

where

sin[k(rd/A)(sin6; — sin 6;)]
ksin[(rd/A)(sinb; ~ sin 6;)]

Let {A\1 > A2 > -+ > A} be the eigenvalues of the
covariance matrix (1). From (1) the well known fact
follows that the noise subspace eigenvalues coincide
with the noise variance [1], [2]:

ga(k) =

(10)

A =02, t=q+1,¢+2,...,n

(11)

Consider now the case of two arbitrary correlated so-
urces (¢ = 2). It was shown in [4], [5] that in this
case the exact explicit expressions for signal subspace
eigenvalues of the covariance matrix (1) can be written
as

Mz =0 + (o} + 03)/2 + no1o2g(n)|p| cos g

[(n(a% + 02)/2 + noroag(n)pl cosg)” -

o=

n*oiof(1 - g*(n))(1 - W)] (12)

where for simplicity g12(n), p12, and ¢;2 hereafter are
rewritten as g(n), p, and ¢, respectively. If p = 0,

the expressions (12) coincide with the well known ex-
pressions for uncorrelated sources [6]. If the sources
are fully coherent, i.e., if |p| = 1, the second eigen-
value becomes equal to the noise subspace eigenvalue
o? because the rank of matrix S becomes equal to
unity.

Let {:\1 >X > > :\m} be the eigenvalues of
the spatially smoothed covariance matrix (5). From
(5) it follows that the noise subspace eigenvalues

Xi = o2,

i=q+1,q+2,. (13)

The comparison of the conventional and spatially smo-
othed covariance matrices (1) and (5) shows that they
have the same structure. Namely, they differ only by
dimension and by correlation coefficients in the sig-
nal waveform covariance matrices (4) and (8). The
tlth element of matrix (4) contains pj;, while the zlth
element of matrix (8) contains p;;, where the relation-
ship between p; and gy is given by (9). Using this
property in the case of two sources, we can obtain the
signal subspace eigenvalues of spatially smoothed co-
variance matrix from signal subspace eigenvalues (12)
by replacing » — m, p — p, where hereafter g3 is
rewritten as p = |p| exp{j¥}. Therefore, taking into
account (9), we can express the signal subspace eigen-
values of the spatially smoothed covariance matrix as:

A2 = ot +m(o? + 02)/2 4+ moyoag(m)g(k)|p| cospE

[(mwf + 03)/2 4 mo102g(m)g(k)|p| cosp)
m2e?03(1 - g(m))(1 - g“’ac)lpl?)} T (1

where

Y = ¢+ (rd/A)(k - 1)(sin by — sin 6,) (15)

3. OPTIMAL SUBARRAY SIZE

Let us derive the optimal rule for choosing the sub-
array size for the special case of two fully coherent
equipower closely spaced sources. It is well known
(see also (12)) that the mutual coherence between the
sources reduces the distance between the signal sub-
space and the noise subspace eigenvalues. The goal
of the spatial smoothing technique is to increase this
distance. Therefore, the optimal subarray dimension
for the fixed number of the total array sensors can
be determined by maximizing the eigenvalue distance
D= )\ - )\q+1 Such a criterion is also correct in the
finite sample case, because the finite sample eigen-
value distance can be considered as a small O(1/v/N)
perturbation of the exact eigenvalue distance when



the number of samples N is large enough. Assuming

lpl = 1, 0} = 62 = 0%, we get from (14):

D Syoo? e mag{a + g(m)g(k) cosh)—

(14 g(m)g(k) cos$)® ~ (1 — g*(m))(1 - gz(k))] 2}

(16)
Applying the expansion sinz =  —z3/3!+-- - to (10)
and assuming that n is large enough (and, therefore, &
is also large), and that the sources are closely spaced,
after neglecting the small high-order terms we have:

k? (md\?, . .
gia(k)>~1— 5 (%—-) (sin 8, — sin 6;)* (17)

Substitution of (17) yields that for all the values of
cos 7, excepting the values which are very close to —1

(1 -g*(R)(L=-g*(m) _
(1 + g(m)g(k) cosy)?

((sin 91 — sin 92)4) <1
(18)

because the sources are assumed to be closely spaced.

Equation (18) enables to apply the expansion v/1 — z =
1-(1/2)z —---to (16), and, using (17), we find after

the neglecting the high-order terms that

mog (1= g*(m))(1 - g*(k))
2 1+ g(m)g(k)cosyp

0% m®k? ((rd/X)(sin 6; — sin 6;))* 19

18 14 cosy (19)
where we assume once more that cos is not very
close to —1. Substituting k = n —m + 1 in (19) and
taking into account that cos also depends on m, we
have that the optimal value of the parameter m can
be found by maximizing the function

D~

_ m¥n—-m+1)?
f(m) = 14 cos®y

(20)
with respect to m. Taking the first derivative with

use of (15) we have

G1 - Gz(’lrd/)\) sin¢
(14 cos®)?

fi(m) = (21)

where
G1 = (1 + cos ) F'(m),
G4 = (sin 6, — sin 63) F(m), (22)
F(m) = m*(n —m + 1)°

From equations (22) it follows that G; = O(m*), while
Gy = O(m®(sin6; — sinfy)). Using once more the
assumption of closely spaced sources, i.e., m|sinf; —
sin ;| < 1, we get that G2 < G and, therefore, the
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term with Gg can be ignored in (21). It yields the
optimal subarray size:

Mopt = 0.6(n + 1) (23)

which is independent of the source coordinates, of the
phase 1 and of the signal power o%.

4. NUMERICAL EXAMPLE

In order to verify the optimality of (23) we consider a
simple numerical example. We assumed a ULA with
half-wavelength spacing and two fully coherent closely
spaced sources with angular separation corresponding
to g(n) = 0.972. We calculated the optimal m using
(23) (with rounding to the closest integer) and also
straightforwardly, by exact maximization the eigen-
value distance (16) with respect to m for different di-
mensions of total array (n = 10, 25 and 50) and for
different phase values (¢ = 0, 7/4, 7 /2, and 7). For
n = 10 eqn.(23) yields mqp = 7 while the straightfor-
ward calculations yield mep = 6, 7, 7, 7 for ¢ = 0,
7 /4, ©/2, and =, respectively. For n = 25 eqn.(23)
yields mop: = 16, while the straightforward maximiza-
tion of the eigenvalue distance yields mop = 16, 16,
16, and 17 for ¢ = 0, 7 /4, 7 /2, and 7, respectively. At
last, for n = 50 we get from (23) that me,: = 31, while
the straightforward computations yield mqp = 30, 31,
31, and 34. We see that the values obtained from
(23) are very close to the exact values for the optimal
subarray dimension for various total array dimensions
and relative phases.

5. CONCLUSION

We address the problem of choosing the optimal sub-
array dimension in the popular spatial smoothing met-
hod for the case of fixed total array dimension and two
coherent equipower closely spaced sources. The crite-
rion of the maximum eigenvalue distance between the
signal and the noise subspaces have been utilized for
optimization of the subarray size. It has been shown
that the optimal subarray size is very simply related
with the total array size and that it does not depend
on the signal source parameters.
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