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RESUME

Dans cet article, nous développons un
nouveau critére de détection du nombre
d'exponentielles complexes en utilisant des principes
issus de la théorie de l'information pour la sélection
de modéles. Apres le développement de ce critére et
son extension au cas bi-dimensionnel, nous
présentons des résultats de simulation et une
application sur des images radar réelles.

Introduction

Recently, many methods have been developped in
high resolution spectral analysis. Most of them need
the knowledge of the number of components in order
to make an accurate frequency localisation.
Unfortunately, the estimation of this number is not
easy when the magnitudes of the sinusoids are not
homogeneous, when their frequencies are very close
and when the signal to noise ratio is low.

Some criteria [1], [2], [3], [4] has been developped
for estimating this number. In the first part of this
paper, we derive a new criterion based on the MDL
(Minimum Description Length) principle [5] where
we consider the probability density function of
modified signal eigenvectors. Then, in order to use
our criterion in synthetic aperture radar imaging, we
propose an extension to the two-dimensional case.
We analyse some characteristics of this criterion like
frequency resolution and compare it with the most
used criterion, MDL. Finally we propose an
application of our criterion to radar images.

ABSTRACT

In this paper, following the information
theoretic approach to model selection, we develop a
new criterion for number of complex sinusoids
detection. After the derivation of this criterion and its
extension to two-dimensional case we present some
simulation results. Finally we apply our criterion to

real radar image.

Problem formulation

~ Let us consider the sinusoids-in-noise model :

y(n) =Y a,exp(j2nfn+ j¢;) + v(n)

i=1

where ¢;, the initial phase, is supposed to be
uniformly distributed in the interval [0,27].

Let the observation vectors Z(n) be defined as
Z(n) =[y(n)--y(n+L-1]", let N be the number of

snapshots.
The assumptions made here are the following :

i) v(n) is a cicular ergodic Gaussian process
with zero mean and covariance matrix ¢2I
where I is the identity matrix.

i) L2M.



210

The eigendecomposition of the exact covariance
matrix Ris :
R = E[y(n)y'(n)| = DU’

where U is an unitary matrix whose colums are the
eigenvectors of R, D is a diagonal matrix whose
diagonal elements are the eigenvalues of R assumed
to be arranged in descending order such that :
D = diag(A,A,,...,A.), and
M >A > A, >A,, =.=A =0)

The eigendecomposition of the sample covariance
matrix is given by :

-~ 1 * eSO
=————YY =UDU

N-L+1

where Y is the hankel data matrix, U is a unitary
matrix and D is a diagonal matrix constructed with
the estimated eigenvalues ordered as follows :

M>A, > A >R, > > A

This decomposition allows to extract two orthogonal
subspaces, Uy, the signal one, spanned by the signal

eigenvectors {ui} and U_, the noise one,

1<i<p

p+l<isL’ Due to

spanned by the noise eigenvectors {u; }
the limited set of data, we can only obtain an
estimation of these two subspaces.

R =0,D,0; + 0, D, U;

n n n

The new criterion MLM

The new criterion is based on the MDL principle and
has the following form:

C=-Log(f(r/8))+a(N-L+1)

The function f is the probability density function of
the variable r. 8 is the maximum likelihood estimator
of the unknown parameter vector 6. a(N-L+1) is a
penalty function depending on the number of samples
and on the free parameters. This expression is the
starting point for the derivation of MDL criteria
derived by Wax [1] and by Reddy [4].

Let us consider the transformed signal eigenvectors 7
introduced by Viberg, Ottersten & Kailath [6] and
defined by the expression:

=00

where Q verifies:

PP =QQ" and QQ=I

The matrix Py is the orthogonal projection

operator based on the Vandermonde matrix:
PE =(I-5(5'S)7'S")

Let us consider in the asymptotic distribution (pdf) of
these vectors. We can show that the vectors 7 are

distributed. The mean and the variance of the
transformed vectors are:
E(r}=0+O(N™)

D;

ot [+ O(N™
YN-L+1 (N

C, =E{rr) = QE(§,4])Q=3
where 3 is the kronecker operator,
2
Di = xicsvz 2
(7"3 - Gv)
and we have used the fact that: Q'UUyQ=1.

Let k be the estimated number of components, then
we obtain the pdf of the transformed vectors:

£z, ... ,%| Oy, ..o o 0,)

k
= (n)”“L“")(fI det(C;)) " exp(-). 1, Cy'r)

i=1

The penalty function is given by:
o(N-L+1)=kLlog(N-L+1)

According to these results, the function MLM is
given by the following expression:

MLM(k) = k(L —k)log(m)+ (L — k)log(fIDi)
i=1

+kZlog(N-L+1)




Then, the estimated number of sinusoids p is the
following one :

p = argmin(MLM(K))

Extension to two-dimensional case

In many applications, such as synthetic aperture radar
imaging, it is often desired to estimate two-
dimensional (2D) frequencies from a 2D data set.
Like in 1D case, if the data set is relatively small the
classical correlogram method can't be satisfactory. So
2D high resolution techniques has been developped.
These techniques need an estimation of the number of
2D sinusoids. For this reason, we present now an
extension of our MLM criterion to the 2D case.

We consider the following model which consists of p
2D sinusoids:

P
y(m,n) = zai exp(j2n(f;m +f,;n) + jo,) + v(m,n)

i=1
where 0<m<M-1and 0<n<N-1,v(mn)isa
2D noise sequence assuming to be white, zero man,
gaussian, circular with variance o2,
Let us consider the samples covariance matrix:
R= ! YY
M-L+D)(N-K+1)

Yo Y1 e YM—K
Y Y, .. Y
where Y = ! 2 MK and
YK—I YK e YM-I
y(m,0) ~ y(m,1) y(m,N-~L)
y(m,1) y(m,2) y(m,N-L+1)

y(m,L-1) y(m,L) y(m,N -1)

with L2pand K 2 p.
Letuscall {A,} __ . the eigenvalues of R arranged

in descending order. According to these notations,
the MLM2D criterion has the following form:

MLM2D = k(LK —k)log(m) + (LK — k)log(fIDi

i=1

+k?log((M -K+ (N ~L +1))

2

Simulations and application to radar imaging

In this section we present simulation results and a
application of MLM on a real radar signal.
-Simulation results: To demonstrate the
performances of our MLLM criterion, we evaluate its
frequency resolution and compare it to MDL one. The
simulations conditions are listed in Table n°1. MLM
results are plotted on fig.1, MDL one on fig.2. We
note that the detection zone (ie the zone where the
detection rate is upper than 50%) is the same for the
two criteria. However MLLM has a better stability in
this zone.
- Application on real radar signal: The targetis a
metallic cone represented below. Its radar signature,
is mainly composed of three major points
contributing to the Radar Cross Section (RCS): two
edge diffractions and a creeping wave.

Edge diffraction

| Creeping wave

The 2D FFT is plotted on fig.3. We note that it can't
separate the three contributors. So it's necessary
using high resolution methods. Before using these
methods, we estimate the number of contributors by
MLM2D. The result given by MLM is 3,
which is the theoretical order for such a
target. Results given by 2D MUSIC are plotted on
fig.4.
Conclusion

In this paper, we present a new MDL based criterion
to estimate the number of sinusoids. We apply this
principle to the transformed eigenvectors introduced
by Viberg [6]. Then, in order to use our criterion in
synthetic aperture radar imaging, we propose a 2D
extension. The empiric detection performances of our
criterion are compared with Wax's criterion ones. We
note that the stability of MLLM is better than MDL
one. Finally we present a real radar image for which
the result given by MLM is good. However, for more
complicated targets for which contributors may be
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very close and with a very large dynamic, it will be
very difficult to easily use such criteria.
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number of observation vectors (V) : 30

__size of the covariance matrix (£): 30

number of sinusoids : 3

monte carlo runs : 100

magnitudes . a(l)=a(2)=a(3)=1

SNR : 0-30 dB by step of 2,5 dB

frequencies : f1= 0.2 , {2=0.3 and £3=0.2+df by step of 1/10

Table n°I: Conditions of simulations
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LFigure n°3: Radar signature of a metallic cone
with the 2D FFT method.
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Figure n°4 : Radar signature of a metallic cone
with the 2D MUSIC method.



