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RESUME

Le papier traite l'estimation des modéles MA a la base d'un
nombre de données fini. Une nouvelle mesure est présentée,
permettant d'evaluer la qualit¢ des modéles MA et ARMA,
estimés par des algorithmes différents. Les algorithmes non-
lineaires produisent assez souvent des résultats non-
interprétables. Seulement la méthode de Durbin livre toujours
des résultats utilisables. Cette méthode estime les paramétres
MA 4 l'aide d'un modéle AR intermédiaire. L'ordre optimal de
ce modele AR est discuté.

I. INTRODUCTION

The statistical behaviour of AutoRegressive (AR) estimates in
finite samples deviates considerably from the asymptotical
theory [1]. Numerous simulations with Moving Average (MA)
models show that also in this class of models considerable
discrepancies exist between the asymptotical theory and results
in finite samples.

The original mathematical problem of MA estimation comes
down to a non-linear minimization of the likelihood function
[2,3]. Several non-linear algorithms exist, that all fail to produce
reliable results in finite samples. Some problems are [4-8]:

- non-invertible models are found: zero outside the unit circle
- non-linear optimization doesn't converge to the global solution
- some orders give a solution, others don't for the same data.
Successful results have been reported for various non-linear
algorithms, when a sufficient number of observations is
available to produce the desired results. For all example
processes, however, a smaller sample size doesn't always
produce acceptable results in simulations.

A prerequisite for an estimation method to be useful in the
context of statistical signal processing is that it solves the
parameters of models of any specified order. The method of
Durbin [9] uses the asymptotic equivalence of MA(q) models
with AR(e0) to estimate MA parameters. The advantage is that
the non-linear estimation problem has been transformed into two
sequential linear estimations, which always gives a solution.

In this paper, a new measure to the model accuracy is
introduced: the model error ME. This is needed for an objective
comparison of the performance of estimation methods and order
selection criteria. It measures the quality of estimated ARMA
models and can also be applied to AR or MA models.
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ABSTRACT

Non-linear algorithms for the estimation of MA models
sometimes fail to produce useful solutions. This paper describes
some reasons for problems in statistical MA estimation. The
possibilities of order selection and a new measure to assessing
the model accuracy for MA and ARMA modelling are
discussed. Only Durbin's MA estimation method through a finite
AR approximation can produce useful MA models under all
circumstances. The order selection and the estimation method
for the intermediate AR model is discussed.

Furthermore, a histogram of optimal parameters shows
peculiarities of non-linear estimation. Finally, some variants of
the MA method of Durbin with an intermediate AR model are
shown.

II. MODEL ERROR

To calibrate the performance of estimation and selection
algorithms, an objective measure to the quality of an estimated
or selected model is needed. In most applications, the model
that predicts future values of the time series with the highest
accuracy will be the best model. Those applications include:
prediction in the time domain, parametric spectral modelling,
error or change detection, classification of data into categories
and quantization of parameters for speech coding. The Model
Error is now derived for this purpose.

Suppose that a true ARMA(p,q) process is given by:

A(z) X, = B(@) g, , where g is Gaussian white noise with
variance 092 and A(z) 1s defined as:

AR) =1 +alz? +a,z7°

o @270 0y
The process is stationary if A(z) has no poles outside the unit
circle. Estimation from observations X yields a model with
parameters A'(z) and B'(z) of orders p' and (' respectively, not
necessarily equal to p and q. Substituting those parameters into
new data Y, the result can be written as: B'(z)n, = A'(z) Y,
where the errors 1, can be seen as the output of the estimated
model with Y as input, B'(z) as AR part and A'(z) as MA part.
The squared error of prediction PE(p',q) is defined as the
expectation Ef nnz ], if Y, is independent of the signal X, that
had been used to estimate the parameters.

Now suppose that the data Y, have been generated with the
process given by: Y, = B(z)/A(z) g, The output 1, of the
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model with A'(z) and B'(z) can be expressed as
N,=A'@)/B'@)Y,, yielding n = [A'(2) B@[A@Z)B'@)]E,. So
the relation between the prediction error of the model and the
innovations that generated the process is given by the
ARMA(p+q', p'+q) process:

Np ¥ € Mg + e Cp+q’ Ma-p-q' = )

e, vde, v +vd) e

n-p'-q 2

where the parameters of C(z) are given by the product A(z)B'(z)
and D(z) equals A'(z)B(z). By considering (2) as a filtering
operation [10], the prediction error PE is the variance of 7,
Astrom [11] has given a solution for a similar problem.

The output of the ARMA process in (2) can be found by
separating it into 2 consecutive filters with an intermediate
signal v, as:

v, t ¢V, + ..+cC .,V 1 = €

n-1 p+q’ Tnp-q n 3)
Ny =V, *d V| + . + dp/m Viepieg -

The covariance R, (K)=E[v,v ., ] can be computed with the
well-known Yule-Walker relations for autoregressive processes
[11]. Afterwards, the variance of 1, follows as E[nnzl, S0

R.(0) R R (p'+q) 1
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If the order of D(z) is greater than that of C(z), the extra terms

of R, (k) can always be computed with the first line of (3),

extrapolating the autoregressive covariance tunction [10].
Finally, the Model Error ME is defined with (4) as:

ME =0 /ad, - 1. )

This model error is a scaled version of the prediction error
E[nnz]. ME will be positive if the poles of C(z) are inside the
unit circle. It can only be zero if all parameters in C(z) and D(2)
are exactly equal, otherwise it is greater. It is a useful measure
to the model accuracy, with significance in time and frequency
domain. It simplifies to NATFE [1] when MA parts are absent
and it can also be used for the fit of MA models by using zeros
for the AR parameters. This distance measure can easily be
computed n simulation studies where the truc parameters of the
generating process are known.

III. COMPUTATIONAL ASPECTS and LEAST SQUARES

In applying the non-linear methods for MA estimation to small
samples, several problems arise [7]; we discuss here the model
fit, the location of estimated zeros and the irregular behaviour
of the residual variance.

a) Fit of MA models to AR data and AR models to MA data.

The theoretically best fitting AR(p") model to a given MA
process is found by computing the theoretical covariances of the
MA process and to use the first p' true covariances for
computation of the AR paramcters, with the Yule-Walker
equations [10]. The best fitting MA(q) model to an AR process
is found by a non-linear minimization of the Model Error as a
function of the MA parameters. No simpler way to compute that
MA model has been found. Numerical computations show that
AR(p) models fit better to MA(I) processes than vice versa.

However, this cannot be generalized to higher order process.
Therefore, simulations with MA(1) processes [5,6] are too
limited and this paper gives simulation results for MA(2) and
MA(3) processes.
b) Zeros and the unit circle

The poles of an AR polynomial are all inside the unit circle
if the reflection coefficients or partial correlation coefficients are
less than 1 in magnitude {10]. The zeros of a MA polynomial
can be studied in the same way, although, of course, the
interpretation in terms of partial correlations is lost. When zeros
are estimated that are close to the unit circle, it is possible that
the true process had such a zero and consequently the model has
a small ME. However, it is also possible that the estimated zero
was caused by the statistical inaccuracy, which leads to an
extremely high ME. As a consequence, estimation methods that
can yield estimated models with zeros on the unit circle for
processes without such zeros are not useful in practice.

¢) Residual variance

The residual variance measures the fit of a model to given
data. Unfortunately, its behaviour in finite samples has some
peculiarities, as will be shown. Several definitions are available
[2], with zero residuals or with backforecasted residuals before
the data interval, used in Conditional (CLS) and Unconditional
(ULS) Least Squares respectively [5]. Backforecasting the
residuals with index O to -q'+! is carried out by running the
estimated filter backwards over the data [2]. With those initial
backforecasted residuals, the fit of an arbitrary MA(q") model to
given data x; is computed as:

é_qlﬂ v B backforecasted
R /4 /. ,
g, =x, - bg,_, - - bq, s i =1,.,N; ©)
N
22 1 /s / A
65(q7) o PIRE AR LA R VY 1z,
i=1

Simulations have shown that backforecasting gives a better
reconstruction of the true excitation signal than with zeros in
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Figure 1 Logarithm of residual variance of a MA (1) process as a

Sunction of the MA parameter, N=30, b=- 0.7.

front. Fig.1 gives the residual variance as a function of the
model parameter for a MA(1) process, with and without
backforecasting. Based on this figure and many others, it may
be concluded that, at least for small samples, say N less than 50
or 100 '

- the behaviour of the residual variance as a function of the
model parameter can be quite wregular



- the global minimum may be found outside the invertible
region

- minima may be found on or near -1 or +1, although the model
error ME becomes o for a model with zeros on the unit circle.
- sometimes no non-linear solution can be found within a
reasonable number of iterations.

- examples have been found with the global minimum within
the interval -1 to +1, with only a local minimum or without any
minimum. Constraining the solutions to parameters within the
unit circle will then give exactly that constraint as minimum, so
that technique doesn't provide sensible models.

Other non-linear methods, like the method of moments [2] or
Godolphin's method [3] also give problems [7]. We didn't find
a non-linear method without difficulties when applied to data
records with less than 100 observations.

The behaviour of the residuals has been investigated further by
determining the parameter value for which the minimum of the
residual variances is found, for 2000 simulation runs in Fig.2.
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Figure 2 Histogram of estimated MA (1} parameters for the same
MA (1) process of fig.], with N =30, b =- 0.7.

The histogram shows the known tendency of backforecasted
residuals to produce a minimum near the unit circle [5].
Moreover, the variance as computed with the histogram is much
greater than the asymptotical theoretical result for the variance
being (l-bz)/N [2]. The variance for the parameter value of a
white noise process estimated with ULS has been determined in
simulation experiments for different sample sizes; the theoretical
variance is 1/N. It was 14.2/N for N=5, 5.6/N for N=10, 3.1/N
for N=20, 1.7/N for N=30, 1.1/N for N=60 and the asymptotical
1/N was found for N>100. So the variance obtained n small
sample simulations 1s much greater than predicted by the
asymptotical theory. This explains partially why MA parameters
produced by non-linear methods will often lie outside the
invertibility region.

IV. DURBIN's METHOD

Durbin's method for the estimation of MA models [9] starts with
the estimation of a long intermediate AR model from the data.
Afterwards, the estimated AR parameters are used as data in a
second AR estimation procedure to find the MA parameters.
The method is based on the asymptotical equivalence of AR(e0)
and MA(q) processes.

Current issues of research are:

- the best estimation method for the intermediate AR model

Vo

- the best intermediate' AR model order
- selection criteria for the MA model order.
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Figure 3 Average Model Enor ME of 1000 AR(p) and MA (3)
models of a MA (3) process, as function of p. N = 60.

Figure 3 shows the ME for AR(p) models and for MA(3)
models that are estimated based on the parameters of that AR(p)
model. It 1s clear that the best fitting AR model with smallest
ME is of order 4. The best MA model, however, is found from
the AR(11) model, that has nothing special in the figure. When
AR models with higher or lower orders are used to estimate the
MA(3) model, the resulting ME 1s higher. It has been
demonstrated before [7] that the best intermediate AR model
orders depend on the process that originally generated the data.
Similar simulations show that the best intermediate AR order for
a given MA process depends furthermore on the sample size. So
the AR order has to be selected.

Simulations can give a good survey of the performance of
methods. As MA(]l) processes are not in every respect
representative, we will give the results of simulations with
various MA(2) processes, with parameters b;=P(1+B) and
b,=p, which is equivalent to two equal "reflection coefficients"
of magnitude B, for -1<B<1. Autoregressive model orders have
been selected with the newly developed finite sample
information criterion, FSIC, that outperforms all other AR order
selection criteria [12]. MA orders have been selected with
AIC(3), which 1s the usual AIC criterion with penalty 3 instead
of 2, because that penalty gives a good compromise between
sclecting too many and too few parameters in the model, at least
for AR models [13]. The MA model order has been selected
from the range 0 to 6, the AR model order from the range 0 to
N/2, where the number of observations N was 60 in the
simulations. It is possible to consider AR orders as high as N/2
for selection if the FSIC criterion is used for selection of the
intermediate AR order. For other AR selection criteria, the
highest possible AR order has to be constrained in advance,
which is in contrast with the theoretical equivalence of MA(p)
and AR(e). The average model errorof a number of simulations
is given for estimated models with 10 different methods.

The following methods and models are compared in Table 1:

A MA model from AR[MA order +1x AR(FSIC)] Burg model
B MA model from AR[{MA order + 2x AR(FSIC)] Burg model
C MA model from AR[MA order + 3x AR(FSIC)] Burg model
D non-linear model of with method B selected MA order

E MA model from AR[MA order +2x AR(AIC)] Burg model
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F MA model from AR[MA order+2xAR(FSIC)] Yule-Walker
G MA model estimated from AR(6) Burg model

H MA model estimated from AR(N/2) Burg model

I AR(FSIC) model computed with Yule-Walker

J AR(FSIC) model with the Burg method

AR models have been included in I and J for a comparison of
the accuracy of AR and MA modelling. The sliding window
technique for selecting an intermediate order [7] has been used
in A, B, C, E, and F. It firstly selects the AR model order, the
order of the MA model that is currently computed is added [7].
The sum of the current MA order plus one (A), two (B,E,F) or
three (C) times the selected AR order is the intermediate AR
order that has been used for the sliding window technique. The
current MA order is added to be sure that the intermediate AR
order is at least equal to that order; factors 1, 2 and 3 are
investigated for the selected AR order because it is known from
figure 3 that the best intermediate AR order in MA estimation
may be higher than the AR order with smallest ME. The
Selection Error SE is defined as NxME from (5).

Table I Average Selection Ervor SE of 10 different estimated
models from 60 MA (2) observations as a function of the MA
parameter 3 b,= B(1+f) and b,=f

Bl-9 |-6 |[-3 o 3 6 9

Al960 [ 458 | 478 | 104 | 485 | 563 | 982
B | 754 | 475 | 510 | 145 | 528 | 534 |8.17
c|778 | 575 {567 | 133 [ 589 | 588 | 798
D[ 521 [ 470 | 209 | 260 | 235 | 499 | 251
E |939 | 823 | 661 | 141 |696 | 740 | 881
F | 176 | 464 | 470 [ 105 | 487 | 488 |9.16
G |856 | 349 | 463 | 120 [ 440 | 471 | 102
H|102 | 122 | 109 {219 | 981 | 975 |91l
T | 246 | 895 | 471 | 214 | 529 {108 | 193
J 193 | 965 | 538 | 229 | 583 | 119 | 207

Taking the average of a certain method over the different values
of B, the sequence in decreasing quality gives:
G-B-C-A-F-E-H-J-1-D.

Non-linearly estimated MA models D and AR models I and J
have the highest SE. Fixed AR orders 6 and 30 in G and H
show that a fixed order may be a good or a bad choice,
depending on the (in practice unknown) true process parameters.
E 1s always worse than B, so FSIC should be used for AR order
selection. Intermediate AR models found with Yule-Walker in
F are seen to perform badly for high absolute values of §, so if
the zeros of the true MA process are close to the unit circle.
Many more simulations are necessary to give a definite answer
which method is to be preferred. So far, we never found a
single example where the sliding window methods A, B and C
performed badly; for all other methods such examples have been
found and an explanation can be given. For statistical
processing, it is tmportant to have a method that will always,

for all types of data, perform with an acceptable quality. The
price to be paid is that this method will not always be the very
best for one given process and sample size.

V. CONCLUSIONS

The model error 1s a good measure for the evaluation of the
quality of estimated models in simulations, AR, MA or ARMA.
It provides an objective measure to compare the performance of
estimation methods and order selection criteria.

Non-linear least squares gives no good models in simulations
with N=60 (method D), even if the order 15 selected previously
with another method or if only MA(2) models are considered.

MA models, estimated with one of the variants of Durbin's
method have a smaller model error ME than AR models
estimated from the same MA(2) processes (methods I and J).

The Burg method B for AR estimation is advisable for
intermediate AR models. The Yule-Walker method F gives often
a slightly better result, but the model error becomes very great
when the zeros of the generating process are close to the unit
circle, for f=0.9.

For the second stage in Durbin's method, estimating the MA
parameters from the AR mode], only the Yule-Walker technique
can be used if one requires invertible models.
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