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RESUME

L'estimation du retard et du coefficient
doppler est un sujet important en plusicurs
applications du traitement du signal. L'effet
du doppler pour les signaux a bande large
peut €tre regardé comme une compression
temporelle. Aprés une estime primaire basée
sur les signaux discrets en temps et doppler,
nous considérons ici une approximation
parabolique pour Il'estimation fine. Les
résultats numériques ont été référé a signaux
aléatoires gaussiens perturbés par Dbruits
gaussiens independents. La performance
obtenu montre les capacités potenticlles de
cette méthode.

1. INTRODUCTION

Time delay and doppler shift estimation
issue in
{1-2]. These

arrival and

is an important many signal

processing areas include the

direction of trajectory in

underwater acoustics, sonar and radar range

and speed estimation in a multisensor

environment, inter-satellite communications,

timing acquisition in a spread spectrum

communication system, motion detection and

compensation in moving images, stereo
vision, etc..
A model for

consists of a frequency

dopplered narrow-band
shift of the

spectrum [3]. This simple model unfortunately

signal

does not apply in the presence of wide-band

signals, where doppler is regarded as an

instantaneous time scale compression or
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expansion (or, for duality, an expansion or

compression of the frequency scale).

Minimization of the ambiguity
function based on generalized cross-
correlation allows to find ML-optimal

estimates of the unknown parameters [1].
Efficient estimation methods are based on a
two-steps algorithm [4]: a coarse estimate is
obtained from some unambiguous smoothed
function; a subsequent fine estimate works on
a wide-band ambiguity function starting from
the coarse estimate. This allows to estimate the
absolute minimum of the ambiguity function
avoiding the wrong convergence on a
relative one. In a recent paper [5], a parabolic
approximation was employed for fine (sub-
sample) estimation of the time delay from

sampled signals. The method is herein

extended to doppler estimation.
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2. CHOICE OF A SUITABLE MODEL

One preliminary question arises,
namely whether it is possible to separate the
estimation procedures of time
shift.

theory 1is that

delay and
doppler The answer provided by the
one may use (w0 separate

estimators if the relative estimation errors
are not correlated. In fact, this fact actually
depends on the particular model chosen to
represent a dopplered signal. Starting from a
reference signal s(t) defined for sake of
simplicity in the time interval [-W/2,W/2], we
have assumed for the scaled, delayed and
dopplered received signal r(t) a model [6] for
which the above condition applies, i.e.:

r(t):a-s(ﬂ) (1)

where D and F are the actual time delay and
the doppler velocity, respectively.

Moreover, the time delay error is
usually less relevant than the doppler error.
30-60 Nyquist

enough for a good estimation performance of

In practice [2], samples are
time delay, while at least 2000 samples need to
be employed to achieve a similar performance
for the shift. As a

working on the largest window, we will focus

doppler consequence,

on the estimation of the doppler coefficient.

A very simple and efficient way to

obtain dopplered versions of a received signal
is to sample it with different rates. For our

purposes, only three measurements of the

dopplered signal are needed, other than the

reference one. The only requirement is that

the actual doppler belongs to an interval

determined by the lowest and the highest

employed sampling rates. This can be

implemented by driving the
with

reference rate

some a priori value of the doppler

coefficient (for example, obtained by a past

measurement), while the other two rates

depends on a given maximum of acceleration
of the

information is

moving object. If no a priori

available, an alternative
scheme uses a parallel grid of samplers, tuned
at different speeds. This is equivalent to
sample the ambiguity function in the doppler
domain.

In practice, after defining A(d,f) as the
ambiguity function of time delay (d) and
doppler shift (f), we must estimate it on a
proper discretized grid in the {d,f} space. The
coarse estimate is implemented by searching
of A(dj,fj), say

A(d1,fy). In order to find a fine (sub-sample)

for the minimum value
estimate of (D,F), we interpolate A{(d,f) around
A(dr.fy) by a

expansion after retaining the only terms up

two-dimensional Taylor

to the second order. Since the estimation

errors are not correlated for the assumed

model, such interpolation reduces to two

separable one-dimensional ones. In other

words, two distinct parabolic interpolations,

A(dj. 1))

placed in a cross around A(d1,fy), need for

based on other four measurements

estimating time delay and doppler shift:

Ag
d=d1‘7'

A(dpda, fy) - A(dpAd, fy)

: 2
A(dp+2d, fy) -2 A(dy, f) + A(d-Ad, f) )
A
f=fJ' 'éi‘

A(dy, f+Af) -2 A(dy, £1) + A(dy, £-81) (3)

where A4 and Af are the difference between

two subsequent values of the

quantized
parameters dj and fj.



3. DISCUSSION OF NUMERICAL RESULTS

The numerical results have been

obtained for random Gaussian signals with a
function,

Gaussian-shaped auto-correlation

ie.:

a2

R () =e 222 (4)

corrupted by uncorrelated Gaussian white

noises with several
(SNRs).

We assume to

Signal-to-Noise Ratios

know the reference

signal x(t)=s(t)+n1(t) and a given number of

delayed and dopplered versions of the
received signal y(t;difj)=r[(1+f;)t+dj]+n2(t).
The doppler compensation can be
implemented at low cost by sampling the
received signal at several rates (1+fj)T. In
practice, while we know the maximum value
of acceleration of the object, we can state the
number of the rates to be considered. On the
other hand, we can use only three rates by
the current

chosing speed estimate and the

two limit future ones.
correlators

Different discrete-time

have been wused for estimating the sampled
ambiguity function A(d;.fj). For our purposes,
three discrete-time cost functions have been

used. The first one seeks to maximize the

direct cross-correlation:
N
D, (di,f) == > x(kT) y(kT; d: ,f:)  (5)
xy l’ J Nk.-‘1 y l’ J

while the ASDF method [5] minimizes:

N

=1
Syy(dify) =5

[x(kT)-y(T; 4. 5)]° (6)
k=1

as far as the digitally faster AMDF method [5]:

vy

N
1/2 1 .
M ) = ,; | X(CT)-y (kT3 dy EDL ()

In practical applications, the available
a priori information on timing and speed may
be very different. In fact, in the presence of a
good prediction, we can make the estimation

by multi-sampling the received signal with a

central value of the timing and doppler
coefficient (d1,fy) very close to their actual
values.

Conversely, if the movement of the
object is unpredictable, we do not know where
should be placed. The

achievable performance is then a periodical

the sampling grid

function of the distance from the ideal
sampling rate of the closest parameter values
in the actual sampling grid.

As a consequence, both the two limit
situations

of perfect and wrong. sampling

have been analysed, namely the ideal case of
intermediate

perfect sampling and an

situation of wrong sampling.

The practical example considered in
our analysis refers (just like in [2]) to an
underwater object moving with a radial speed
of 7 knots (corresponding to a time scaling
factor on the order of F=2.4 10-3) and uses an
to obtain the

observation time of 0.1 sec

timing and doppler estimates. The central

sampling time is T=5 10-5 sec, while the
autocorrelation standard deviation in eq. (4)
has been assumed a=T. The sampling grid
resolution is one sampling period for the
timing and 2 knots for the speed.

In particular, since the bias is strongly
dependent on the autocorrelation assumed for

the signals, the variances of the speed

estimator (3) using the three discrete-time

correlators (5)-(7) has been evaluated by 1000
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independent runs of computer simulations
and is reported in the figures versus the SNR
in the range [0,40] dB. They refer to the case
(Fig.

intermediate wrong sampling (viz: 0.25 T of

of perfect sampling 1) and an
delay and 0.5 knots of speed) for the actual

parameter values (Fig. 2).
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Fig.l. Variance of the doppler (F=2.4 10-3)
estimates in the ideal case of a perfect
sampling of the two-dimensional ambiguity
function.
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Fig.2. Variance of the doppler (F=2.4 10-3)
estimates in the intermediate case of
wrong sampling of the two-dimensional
ambiguity function.

The achieved performance shows the

potential capability of such an open-loop

algorithm and suggests useful guidelines for

further investigations.
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