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Abstract Long-Range Dependence (LRD) arises in
communications (1/f noises) [1], and in many other
fields, such as hydrology [2], astronomy [3], meteoro-
logy [4], finance [5] and the economic sciences [6]. In
many problems, we are given a time series from the
output of a dynamical system whose behaviour we wo-
uld like to characterize. For ezample, one may wish
to know whether a system behaves linearly or not, un-
der the assumption that its input is linear. However,
when the output signal has LRD in the mean, it may be
difficult to detect the nonlinearity. In this paper, we at-
tempt to explain one of the reasons why this is so, and
propose a linearity test to overcome this problem on a
class of nonlinear time series with LRD. Its power is
compared to that of some classical linearity tests.

1 Introduction

A process, z¢, is often said to be LRD persistent (in
the mean), if it has non-summable autocorrelations,
pa(T), verifying p, (1) ~ ar~P, for large |7| (0 < ),
and a locally unbounded spectral density, S¢(A), beha-
ving like |A]°~! at least one frequency location. This
is in constrast with processes having Short-Range De-
pendence (SRD) in the mean, for which the spectral
density is bounded everywhere and the autocorrela-
tion function decays exponentially as the lag increases.
Many dynamical systems act on LRD signals, while
their outputs could be LRD or not. In applications such
as system characterization or classification, an impor-
tant issue may be to determine whether one or several

Résumé Les signauz a longue mémoire apparaisent
dans beaucoup de situations. On les retrouve ausst
bien en communications (bruits 1/f) [1], qu’en scien-
ces €économiques [6], finances [5], astronomie [3],
méteorologie [4{] ou en hydrologie [2]. Dans certains
problémes, on s’interesse a savoir si un systéme dyna-
mique se comporte linéairement ou non. Pour ce faire,
on peut appliquer un test de linéarité a la série chro-
nologique obtenue & partir de sa réponse. Il se trouve
que lorsqu’il y a de longue dépendence dans la série,
les tests de linéarité paramétriques deviennent trés sen-
sibles au choiz de la fonction de test. Dans ce papier,
on se propose d’expliquer ce probléme et d’en proposer
une solution basée sur un choiz approprié de la fonction
de test, pour une classe des séries a longue mémoire.

systems behave linearly or not, or whether some be-
have more nonlinearly than others. Linearity festing
is used to estimate the incidence of nonlinearity in a
given time series, and may also help to infer the type
of nonlinearity in the data by using a battery of test
functions.

An important family of tests are those tailored against
specific nonlinear alternatives. These tests postulate
a model that encompasses both the null hypothesis of
linearity and the alternative of nonlinearity. That is, a
model such as

¥ = 01'Ye11 + g6, (Yic1,2) + & (1)
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where 6 = (61,6;) is the parameter vector for the mo-
del, Y;_1,1 and Y;_; s are vectors of lagged values of
the process (that may have different dimensions), and
& is assumed to be a zero-mean Gaussian 7.7.d. sequ-
ence. Under the null, both 6, and g4,(.) are equal to
zero. Therefore testing linearity amounts at testing for
0, = 0 in this nested model.

The nonlinear function gg,(.) is intended to describe
the form of nonlinearity in the data, and it is assumed
to be at least twice continuously differentiable on the
parameter vector.

Most parametric linearity tests can be put into this
framework, as shown in [7]. Take for example, those
inspired by Tukey’s one-degree of freedom test for non-
additivity [8], such as Keenan’s [9] and Tsay’s [10].
Both test for the significance of the interaction or non-
linear terms in a second-order Volterra expansion of ¥,

Y = p+ Zbift—i + E Z b; jer—icr—j + e (2)
=1 1=0 j7=0 :

They rely on the assumption that nonlinearity in y;
would imply that b; ; are significantly different from 0,
for at least some 7, 7. This nonlinearity would be refle-
cted in the diagnostics of a linear model fitted to y,
because the residuals should then be correlated with
second-order cross-terms, Y;—;Y—;.

2 Some problems of linearity

testing under LRD

Nonlinearity can be masked by persistence in different
ways [4]. One possibility is due to an imbalance of both
sides in the nonlinear regression equation that usually
forms the second stage of parametric linearity tests.
This entails low-power for the test. For example, ima-
gine the following model

Yt = ays—1 +by—1&-1 + & (3)

where ¢ =~ 1 and ¢ is an ¢.7.d. sequence. This cor-
responds to a bilinear near-unit root time series. These
series are LRD in the mean, in the sense that the con-
ditional mean E(y;1.,|y:) never goes to zero as the fo-
recasting horizon m goes to infinity. In fact, if we wish
to stick to the definition of LRD given above, it is pos-
sible to show that they have an hyperbolic spéectral be-
haviour in f? (of the form 1/f2) near the origin, and
that their linearly decaying sample autocorrelation fun-
ction (ACF) could be regarded as a degenerate hyper-
bola. Misspecification of the disturbances in the right-
hand side of (3) would lead to a linear AR(1) model as

the best fitting model. The resulting residuals would
be SRD in the mean and cause an imbalance problem
when regressed on a nonlinear function, g(.), of y;_1,
that is itself LRD; for example, g(y—1) = y7_;.

3 A linearity test for a class of pro-
cesses with LRD

The imbalance problem appears when the linear resi-
duals, ¢, = y; — 61Y;—11, are SRD in the mean while
the regressor generated by the testing functions are not.
For example, if y; is linear LRD in the mean so will be
y# (this can be easily checked in the frequency domain,
since the spectrum of y2 results from convolving that of
y; with itself) (figure 1). Fortunately, there are nonli-
near transformations of y; for which LRD is absent or,
at least, reduced to some extent. Take for instant such
bounded transformations based on the exponential fun-
ction as emp(—l%[), ytexp(—g%), or on trigonometric
functions, such as sin(y;), or cos(y:) (see figure 3). Hal-
Iman [11] showed that the exponential transformation
of a LRD-in-the-mean process such as a random walk,
may no longer be LRD in the mean. In fact, for the
random walk case, the transformed series has the same
autocorrelation structure as a stationary AR(1) pro-
cess, even though (strictly speaking) it is still LRD in a
higher-order moment [12]. On the other hand, trigono-
metric transformations of a LRD-in-the-mean process,
such as y; = sin(z:), where 2; is LRD in the mean, have
been shown to lead to stationary behaviour [13, 12]. In
particular, if y; = sin(z;), with z; denoting a random
walk, then y; is a stationary AR(1) process. There-
fore, in order to restore the balance in the regression
equation of €; on 1a(Y:—1), we need to construct a suf-
ficiently mixing process z;, from an appropriate test
function z; = ¥a(Y}), which will restore the balance of
the nonlinear regression equations in a parametric test.
A situation where such an strategy has proven succesful
is in testing against near-unit root processes with non-
linearity in the mean or with conditional heteroske-
dasticity. These processes may arise in the output
of some nonlinear sensor devices measuring a LRD
(in the mean) flow [4]. A most simple testing fun-
ction that is appropriate for these nonlinear proces-
ses, and which we have used in our test, is gg(Yi-1) =
yi—1exp[—(Yi—1 — C)'E(Yi—1 — C)], where 2 is a po-
sitive definite matrix,-and 8 = (C,%). The spectral
contents of ¢; and gs(Y;—1) can be matched to a good
degree of accuracy by tuning the parameters in . This
smoothing matrix controls the amount of nonlinearity



and creates the necessary mixing that destroys LRD
(see figure 4).
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Figure 1: Preservation of LRD in the mean after a
square trasformation: (a) real-world series with LRD in
the mean, (b) its spectral density estimate showing the
pole at the origin, (c) the square of the previous series,
and (d) the spectral density estimate of (c), showing
still the singularity near the origin.
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Figure 2: A real-world example that shows the imba-
lance problem in linearity testing. The spectral featu-
res of the series and its linear residuals are unmatched
near the origin: (a) sample of wind speed data from a
nonlinear sensor, (b) spectral density estimate of (a),
(c) linear residuals from an optimal (using AIC) AR
model fitted to (a), and (d) spectral density estimate
of these residuals.

4 Results

In the experiments, we considered the model y; =
a(yt—1)Yi—1 + byi—16;. The power of our test (T°0) was
estimated using the asymptotic critical values at the
5% level, and compared to the power of both Keenan’s
(T1) and Tsay’s (T'2) tests, on 500 independent repli-
cations of near-unit root time series with and without
conditional heteroskedastic dependencies. There were
500 observations from each time series, which were ge-
nerated according to this model, with a(y:—1) constant
(model A), and with a(y;—1) = 0.9+ 0.lezp(~o?y2 4
(model B) (in both cases, at the border of the nonsta-
tionary region), and for different values of the smo-
othing parameter o. As shown in the table below, our
test outperformed the two others in all the cases.

” MODEL versus TE’ST| T0 ] T1 | T2 |

A (b=1.0) 0.6 |0.2 |0.29
B (b=00,02=1.0) |0.15]0.03 | 0.04
B((b=10,02=10) |08 |042]0.55
B (b=0.0,02=10.0) |05 | 0.04]0.02
B (b=1.0,02=10.0) | 1.0 |0.54 | 0.59
B (b=10.0,0%=100.0) | 0.55 | 0.02 | 0.08
B (b=1.0,0=100.0) | 1.0 | 0.68 | 0.86
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Figure 3: Periodogram estimates for a stationary fra-
ctionally differenced white-noise series, z;, with long-
memory parameter d = 0.2 (a)-(b), its exponential
transformation ezp(z:) (c), and its sinus transforma-
tion sin(z:) (d). The singularity of the spectral den-
sity at the origin is attenuated, if not removed, by these
transformations.
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Figure 4: Periodogram estimates for the transforma-
tion y;, = =z;exp(—o?z?), where z; is a fractionally
ARIMA(0,d,0) with long-memory parameter d = 0.3:
(a) and (b) corresponds to the transformed series and
its periodogram (respectively) for ¢ equal to 2 times
the standard deviation of z;, whereas (c) and (d) cor-
responds to a value of the smoothing parameter, o, 10
times smaller. Notice how LRD in the mean re-appears
progressively in the transformed series as the value of
the smoothing parameter is decreased, that is, as the
series becomes “more linear”.
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