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RESUME

Dans cet article, on traite le probléme de la détection
d’un signal aléatoire faible noyé dans un bruit non gaussien
en utilisant un systéme de préfilirage avec retard et mul-
tiplication, suivi d’un détecteur de raies spectrales. La
déflexion de cette structure d’interception est estimée et
maximisée suivant la fonction de transfert de préfiltrage et
suivant le temps de retard.

1. INTRODUCTION

Signal interception, which is attempted for a variety of
reasons, such as reconnaissance and surveillance, has re-
cently received a great deal of attention, also owing to
the growing use of systems employing direct-sequence and
frequency-hopped spread-spectrum signals.

In interception problems, the knowledge of the signal to
be detected is limited to a few characteristics, such as fre-
quency band, modulation format, and modulation charac-
teristics (e.g., hop rate, keying rate, etc.). Then, the signal
is suitably modeled as a random process.

A possible approach to the detection task for signal in-
terception is based on likelihood ratio testing and leads to
locally optimum (LO) (i.e., optimum under low signal-to-
noise ratio (SNR) conditions) interceptors whose structure
can result quite difficult to implement when a non-Gaussian
noise environment is considered. In particular, even if
the simplifying assumption of independent noise samples is
made, the detection structures include zero-memory nonlin-
earities that depend on the univariate probability density
function (PDF) of the noise [1].

A different approach to the interception problem, which
is called feature detection, is based on a scenario in which
the signal presence is established according to whether some
signal characteristics (features) are detected. Possible fea-
tures depend on the model adopted for the signal to be
intercepted and include zero-crossing rate, power spectral
density, carrier frequency, bit rate, etc. In particular, car-
rier frequency and bit rate have been widely used in inter-
ception problems of digitally modulated signals.

Recently [2,3], the problem of detecting the presence
of weak binary-phase-shift-keyed (BPSK) signals or BPSK
direct-sequence spread-spectrum signals embedded in ad-
ditive Gaussian noise by means of a prefilter-delay-and-
multiply (PFDM) device followed by a spectral line detector
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has been addressed. In particular, both prefilter response
and delay value have been optimized with respect to the
criterion of the maximum output SNR. Moreover, the ro-
bustness of the interceptor, as measured by the degree of
tolerance to errors in pulse rate and carrier frequency, has
been investigated. :

Although the Gaussian noise model is usually adopted, it
is not always justified because there is a wide range of the
communication spectrum for which the background noise
exhibits highly non-Gaussian characteristics. Therefore,
since the synthesis of the LO interception structure in non-
Gaussian noise assumes perfect knowledge of at least the
univariate noise PDF [1], it is interesting to consider the
very simple PFDM device for feature extraction in non-
Gaussian noise.

The present paper deals with feature detection for inter-
ception of weak signals embedded in additive white non-
Gaussian noise. Specifically, the PFDM interception struc-
ture is analyzed under the assumption that the signal to
be detected is modeled as an arbitrary cyclostationary or
almost cyclostationary random process. At first, the de-
flection of the PFDM detection statistic is evaluated as
a function of the prefilter transfer function and the delay
value. Then, a necessary and sufficient condition that al-
lows to achieve the maximum deflection is found. Finally,
the performance of the PFDM detector optimized against
non-Gaussian noise is compared with those of two subopti-
mum PFDM interception structures.

2. INTERCEPTION STRUCTURE AND
DEFLECTION EVALUATION

The interception structure considered here consists of a
linear time-invariant filter followed by a delay-and-multiply
device that multiplies the filtered received signal by a de-
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layed replica of itself. The output signal is then sent to a
spectral line detector which measures the strength of the
regenerated spectral line at frequency . Therefore, under
the assu}nption of large sample size, the decision statistic
of the PFDM detector is well approximated by

1/2
2H(l/ + af2)H"(v — a/2)F (v, a)cos(2nvk)dy|.

(1)
In (1), the filter transfer function H(v) is assumed to be
Hermitian, k is the delay value, * denotes complex conju-
gation, and
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where N is the sample size and r; is the ith sample of the
received signal. When the signal to be detected is present,
7; = 8; +n; where s; is the ith sample of the zero-mean cy-
clostationary (or almost cyclostationary) real random sig-
nal to be intercepted and n,; is the sth noise sample. The
random variables n; are assumed to be mutually indepen-
dent, identically distributed, and statistically independent
of s;.

In weak-signal interception problems, an appropriate
performance measure is the deflection [1,4], which is de-
fined by
I El(Y) _ EO(Y) |2 (3)

VARy(Y) ’
where Eo(-), E1(-), and VARy(-) denote the expectations
conditioned to the signal absence hypothesis Hy and the
signal presence hypothesis H;, and the variance under Hy
of the decision variable Y.

To ensure mathematical tractability, one evaluates here
the deflection of T instead of that of | T |. This renders
the resulting deflection formulas less useful than desired
since they are based on a statistic that differs from the
true detection statistic by the nonlinear operation | - |.
However, since for N >> 1 the deflection of the statistic
| T | is always larger than the deflection of T, the evaluated
deflection is a conservative measure of the performance of
the PFDM detector [4]. Moreover, it can be easily shown
[5] that, for o # 0, D(T') turns out to be coincident with the
output SNR (frequently assumed as performance measure
[2,3]) defined as the ratio of the power of the regenerated
spectral line at frequency o to the power of the output noise
term in a very narrow band centered at frequency «.

The evaluation of the deflection D(T') can be carried out
if one assumes that the sample size N satisfies the following
conditions:
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where 3 represents all cycle frequencies associated with the
signal to be intercepted and 7 is the width of the cyclic
autocorrelation function K?(-) [6]. On these assumptions,
it results that

1/2 2
. / S (v)W(v)dv

~1/2
D (T) = 2 ’
2m3 ¥(W)

where

W) A Hv+ af/2)H (v — a/2)cos(2nvk), (T)

1/2 2 1/2
Ay a x| [ weyw| + [ we Ea @
~1/2 ~1/2
x A 253, 9)
my
m A E[n‘i]’ 1=2,4, (10)

and S%(-) denotes the spectral correlation function at fre-
quency a of the signal to be intercepted. Note that
mg > m2, which implies x > —2. Moreover, relative to
the Gaussian PDF (x = 0), positive values of x pertain
(apart from pathological distributions) to PDF’s that are
more peaked, whereas negative values of x correspond to
less peaked PDF’s.

In the particular case of Gaussian noise, the maximum-
deflection interception structure can be easily obtained ap-
plying the Schwarz inequality to (6} {2,3]. This leads to the
condition

(11)

where c is an arbitrary constant not equal to zero. By sub-
stituting (11) in (1), one obtains the maximum-deflection
statistic for the Gaussian noise case:

H(v + a/2)H" (v — a/2) cos(2mvk) = ¢S (v)*,

[Te| = (12)
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The deflection of Ty in a Gaussian noise environment
results to be

N 1/2
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| $3(v) | do. (13)

Moreover, the deflection of T in a non-Gaussian noise en-
vironment, taking into account (6), turns out to be
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Then, the deflection of T¢ in a non-Gaussian noise charac-
terized by x > 0 is never greater than the maximum value
achievable in Gaussian noise. Moreover, when K2(0) = 0
both deflections are equal with each other, independently
of the noise environment (i.e., for any value of x).

Finally, note that a general solution to the nonlinear
functional equation (11) has not been found. Only some
cases, where the delay value and the signaling format are
fixed, have been treated [2,3]. For example, for a BPSK
signal, when the delay is equal to zero and the bit rate is
the feature to be extracted, the solution to (11) leads to
the so-called matched-filter squarer.

3. DEFLECTION MAXIMIZATION

The aim of the present section is to find a condition (in-
volving both prefilter transfer function and delay value) as-
suring the deflection maximization.



From (6)-(8) it follows that D(T) is invariant to scaling
(i.e., D(T) = D(cT),c # 0) so that maximizing D(T) is
equivalent to maximizing Re{fjﬁz S*(v)W(v)dv} (Re{-}
denotes the real part of the quantity in the brackets) under
the constraint that 4(W) is equal to a constant. Thus, the

optimum W(v), say Wo(v), is given by

Wo(v) = arg{max 8(W)}, (15)

where
1/2
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and A is a Lagrange multiplier.

Defining Jw () = ®(W + € 6W), where £¢W is an arbi-
trary variation in W, a necessary condition for Wy to solve
(15) is

Ty, (0) = 0, VW,  (17)

where prime denotes the derivative operation. After some
manipulations, one has
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Since 6W(v) is arbitrary, J"V(O) will be zero if and only if
SE(v) - ¢ —22W*(v) =0, wve(—1/2,1/2], (20)
which leads to

MWo(v) = SE(v)* — —X—K2(0)",

x+2 (21)

A sufficient condition for Wy to maximize the deflection
is that Jw,(€) < Jw,(0) for arbitrary 6W and e. Since

Two(€) = Twy (0) = A1 (W)

X # —2.

(22)

for all € and 6W, (21) with a positive ) is a necessary and
sufficient condition for Wy to maximize the deflection. Note
that, as expected, in the Gaussian noise case (21) coincides
with (11). Moreover, it is worthwhile to emphasize that if
K2(0) = 0 the PFDM optimized against Gaussian noise re-
tains its optimality properties also in a non-Gaussian noise
environment. The condition K(0) = 0 is verified, for ex-
ample, when the signal to be detected is a full-duty-cycle
rectangular envelope BPSK signal, and the considered cy-
cle frequency « is an integer multiple of the bit rate or
the chip rate for a spread-spectrum signal. Note that, for
spread-spectrum signals, the baseband pulse has large ex-
cess bandwidth (bandwidth in excess of the minimum band-
width for zero intersymbol interference) so that it can be
usefully approximated in the time domain as a rectangular
pulse.

By substituting (21) in (1), it results that the PFDM
decision statistic optimized against non-Gaussian noise can
be written as

K*(0) & .y
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(23)

In other words, the statistic of the PFDM detector opti-
mized against non-Gaussian noise can be viewed as a mod-
ified version of the one optimized against Gaussian noise.
Specifically, a term is subtracted to T that depends on the
signaling format through K(0)* and on the noise through
the second- and fourth-order moments. Note that, unlike
the LO interception structure synthesized in [1], the detec-
tion statistic (23) does not require knowledge of the uni-
variate noise PDF.

In regard to the deflection of Tn¢, by substituting the
optimum solution Wo(v) (given by (21)) into (6) one ob-
tains that

D(Tng) = D(T¢) — L
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Then, the deflection achievable in a non-Gaussian noise
characterized by x > 0 by using the optimized decision
statistic is never greater than the maximum deflection
achievable by the decision statistic optimized against Gaus-
sian noise.

From (14) and (24), for KZ(0) # 0 and x # —2, it results
that

D(Tyg) _ 2d+x 2d+x(d—1)
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is the width parameter of the cyclic autocorrelation func-
tion K2(-).

As a function of d, the ratio p reaches the maximum
value pmax = (4 + x)?/[8(x + 2)] for d = 2. Moreover,
when d 3> 1, the advantage that can be achieved by using
the PFDM detector optimized against non-Gaussian noise
rather than the one optimized under the Gaussian noise
assumption is limited (see Fig.1). The deflection of Tng
can be significantly superior to that of T¢ in highly non-
Gaussian noise environments.

Note that D(Tc), D(Tne), and D¥¢(Tg) do not depend
on the delay value k, although the filter transfer functions
satifying (11) or (21) change as the delay value changes.
To examine a detection structure whose performance de-
pends on the delay value, let us now consider the PFDM

T T l T [ T T T T

p(dB) [ !

8

lIIlIIllIll




148

n(dB) i

llllllllll!illlll[]

detection structure obtained by adopting as filter transfer
function the solution of (11) for & = 0. The resulting deci-
sion statistic is

1/2
TS| = f S3(v)* cos(2mvk)F (v, a)dv|. (27)
-1/2

Moreover, it results that

Napmoy . N [g(k)]”
D (TG)‘m§ x | K&(k) [ +9(0) + g(2k)’ )

where
1/2
g(m) A / | S*(v) |? cos(2mvm)du. (29)
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Since T§ is the optimum statistic for k¢ = 0 and Gaus-
sian noise, the consideration of k # 0 when ¥ = 0 is a
suboptimum choice. However, if this interception structure
operates in a non-Gaussian noise environement, it can exist
a delay value, not equal to zero, that maximizes D(T2).

Figure 2 presents the ratio

D(TNG)
"2 DYy

(30)

as a function of the delay value k and for different values
of the noise parameter x. Specifically, it refers to the case
where the signal to be intercepted is a full-duty-cycle rect-
angular envelope BPSK signal sampled at rate f,. The
sampling rate has been fixed at f, = 16/Tp, with Ty the bit
duration, and the selected cycle frequency « is twice the
carrier frequency. For k = 0 it results that n = p, since in
such a case DV¢(T9) = DNG(Tg). For afixed k # 0, when
7 assumes a value less than the one corresponding to & = 0,
one obtains that DVNG(T2) > DNC(Tg). With regard to
this, Fig.2 shows that in highly impulsive noise (x > 1) the
choice k = 8, that is, a delay equal to one-half of the bit
duration, is appropriate.
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