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RESUME

Nous proposons dans cet article une contribution a la
théorie de la cyclostationnarité d’ordre supérieur intro-
duite récemment pour généraliser la théorie de la cyclo-
stationnarité d’ordre deux. Nous étudions les effets sur
les statistiques cycliques d’ordre supérieur & deux de ces
systémes linéaires variant dans le temps qui transforment
une série temporelle presque périodique dans une autre série
temporelle presque périodique. La classe considérée com-
prend les systémes linéaires variant dans le temps presque
périodiquement et par conséquent les systémes lineaires in-
variant dans le temps.

1. INTRODUCTION

In recent years, the theory of signals from which finite-
strength additive sinewaves can be generated by using
quadratic transformations has been developed. Moreover,
such a theory has been applied to problems of weak-signal
detection, parameter estimation, system identification, etc.
[1]. Algorithms based on spectral line generation are asymp-
totically independent of both noise and interference and
then result to be highly tolerant to noise and interference in
practice.

There are some signals from which spectral lines can-
not be generated by a quadratic transformation, but from
which spectral lines can be generated by using an Nth-
order nonlinear transformation with N > 2. The mini-
mum order of nonlinearity that is necessary to generate a
sinewave from a signal is called the order of cyclostationarity
of the signal, and the frequency of the regenerated sinewave
is called cycle frequency. For example, a pulse-amplitude-
modulated signal with bandwidth equal to the Nyquist rate
is fourth-order cyclostationary because no nonlinearities of
order less than four can generate a sinewave from such a sig-
nal, but a fourth-order nonlinear transformation can gener-
ate a sinewave with frequency equal to the pulse rate [2],[3].

Relevant results on the theory of higher-order wide-
sense cyclostationarity (WSCS) have been very recently pre-
sented in both time-series and stochastic process frame-
works. Moreover, applications to higher-order spectrum es-
timation, system identification, and weak-signal detection
have been presented (see [2]-[6] and references therein).

The present paper investigates the way in which the
higher-order WSCS properties of time-series change as they
are processed by linear time-variant systems belonging to

E-mail: izzo@nadis.dis.unina.it

ABSTRACT

A contribution to the theory of higher-order cyclostation-
arity very recently introduced to generalize the second-order
cyclostationarity is given. The effects on the cyclic higher-
order statistics of those linear time-variant systems that map
almost-periodic inputs into almost-periodic outputs are in-
vestigated. The class of systems considered in the paper
includes the linear almost-periodically time-variant systems
and hence the linear time-invariant systems.

the class of “stationary” systems introduced by Claasen and
Mecklenbriuker in [7]. This class of systems is that which
maps almost-periodic inputs into almost-periodic outputs.
Therefore, in the fraction-of-time (FOT) probability frame-
work it can be referred to as the class of nonrandom systems.
Linear almost-periodically time-variant systems and hence
linear time-invariant systems are subclasses of the class con-
sidered here.

2. BACKGROUND

In this section the class of nonrandom linear time-variant
systems is presented and a brief introduction on higher-order
wide-sense cyclostationarity is provided.

A. Nonrandom linear time-variant systems

In the fraction-of-time probability context, a nonrandom
system is a possibly complex (and not necessarily linear)
system that for every deterministic (i.e., constant, periodic,
or polyperiodic) input time-series delivers a deterministic
output time-series. Therefore, for a system input time-series

2(t) = &2, (1)
the system output time-series y(t) can be expressed as

y(t) = Y Go(AN)e?* e, (2)

e

where € is a finite or denumerable set and G, () and @, (-)
are complex functions and monotonic real functions {respec-
tively) that characterize the system.
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A nonrandom linear time-variant system can be charac-
terized by the transmission function [7]

Z G f ‘Pa )) - Z Ha(f) ‘5(’\_"/)0(f)),

gEQ geES]
3)

where §(-) is Dirac’s delta function, the functions %, (-}, re-
ferred to as the frequency mapping functions, are the inverse
functions of ¢, (-), and

=N

Ho(f) o () Go (¥o

in which 1,2)0 (-) denotes the derivative of the function 1, (-).
By inverse Fourier transforming the first and the last sides
of (3), one obtains the expression of the impulse-response

function
=Y ho(t) ® T, (t, u), (5)
geQ

() (4)

where ® denotes convolution, h,(t) is the inverse Fourier
transform of H,(f), and

a [T . ~
T, (t,u) :/ 6_72"¢“(f)“e]27"ftdf_ (6)

The class of nonrandom linear time-variant systems in-
cludes that of the linear almost-periodically time-variant
(LAPTV) systems which, in turn, includes, as special
cases, both linear periodically time-variant and linear time-
invariant systems. For the LAPTYV systems, the frequency
mapping functions v, (f)} are linear with unitary slope, that
is,

"/)U(f):f“o':

and then the impulse-response function can be expressed as

= Z he(t — u)ejz’”’“. (8)

gEQ

o€, (7)

The systems performing time scale changing belong to
the class under consideration. In such a case, the impulse-
response function is given by

h(t,u) = é(u — at), (9)

where @ # 0 is the scale factor, the set Q contains just one
element, and

& |~
o

"/‘a(f) = (10)

Linear time-variant systems that cannot be modeled as
nonrandom include chirp modulators, modulators whose
carrier frequency is a pseudo-noise sequence (as in the
spread-spectrum modulation), and systems performing time
windowing.

B. Higher-order cyclostationarity

In the FOT probability context, a possibly complex-
valued time-series z(t) is said to exhibit Nth-order wide-
sense cyclostationarity with cycle frequency o # 0 if at

least one of the Nth-order cyclic temporal moment func-
tions (CTMF’s)

Re(r)y =2 <Hw(*)”(t+7’u)e_jz"at> (11)

n=1

A

is not identically zero. In (11), 7 = [r1,...,7~]T and

z 2 [2()2(2), ..., 200%(¢)]T are column vectors, (-) denotes
infinite time a.veraging, and (), represents optional conju-
N

gation of the nth factor of the lag product H 2 (t =+ 7).
n=1

The magnitude and phase of the function Ry, (7)y are am-

plitude and phase of the sinewave component with frequency

« contained in the lag product.

If the set of Nth-order cycle frequencies, say A, y, is fi-
nite or denumerable, the time-series z(t) is said to be wide-
sense almost-cyclostationary [2]. In such a case, the ex-
pected value of the lag product, which is called the Nth-
order temporal moment function, is defined by

Ret,r)v 2 3

a€hs N

o T)Nejz"“t. (12)

The N-fold Fourier transform 8 (f)y of the CTMF
i1s called the Nth-order cyclic spectral moment function
(CSMF) and can be written as [2]

Sz (f)n = Sg(F)wé(£™1 - ), (13)

A A
where f = [fl,...,fN]T, 1= [1,
the operator that transforms a vector w 2 [wy, ...

w 2 (w1, ..., wg—1]T. The furction Sg(f' ), referred to as
the Nth-order reduced-dimension CSMF (RD-CSMF), can
be expressed as the (N —1)-fold Fourier transform of the
Nth-order reduced-dimension CTMF (RD-CTMF) defined
as

, 1T, and prime denotes

,wg]T into

RE () 2 Fo(r)N lrymo - (14)

Let us now consider the Nth-order temporal cumulant
function

P
Colt, )y = |(=17" o — )] Ray, (s mus)jual| »
P =1
(15)
where P is the set of distinct partitions of {1,..., N}, each
constituted by the subsets {y; : ¢ = 1,...,p}, || is the

number of elements in p;, and @,, is the |u;|-dimensional
vector whose components are those (possibly conjugate) of
« having indices in u;. Taking the N-dimensional Fourier
transform of the coefficient of the Fourier series expansion
of the almost-periodic function Cyg (%, T)x,
eﬁ A e —jawpBt

z(T)v = (Ca(t, 7)ne Y (16)
which is referred to as the Nth-order cyclic temporal cu-
mulant function (CTCF), one obtains the Nth-order cyclic

spectral cumulant function 3’;( f)n. It can be written as
[2]

P2 (Fx = Pa(f)n8(f™1 - B), (17)



where the Nth-order cyclic polyspectrum Pf,( f)n is the
(N —1)-dimensional Fourier transform of

Ch(r")w 2 Co(T)N lry=o, (18)

which is the reduced-dimension CTCF.

3. INPUT/OUTPUT RELATIONS FOR
NONRANDOM LINEAR SYSTEMS

Let us consider a nonrandom linear time-variant system
excited by a wide-sense almost-cyclostationary time-series
z(t) whose set of Nth-order cycle frequencies, for the con-
sidered conjugation configuration, is By n.

The Nth-order CTMF at the cycle frequency « of the
output time-series y(t) can be derived accounting for (5)

and (11):
o= fo for 2 (ML)

Z ng:('v NRa< 0L e (r-u
N

ﬁEBm,N

v)ydudo, (19)

where

R;L.l)l ‘I'(‘)N (‘I’ ‘U)N = <H \I}( )"(t+Tn,t+'U ) —j21r7t> .

n=1
(20)
Moreover, the input/output relation in terms of RD-
CTMPF’s can be easily obtained setting 7,y = 0 in (19).
Taking the N-dimensional Fourier transform of both sides
of (19), one obtains the input/output relation in terms of

CSMF's:
)nfn))

SZ(f)N: Z (H H(*)n
Y 8 (#60) b pnrr gy @)

ocQN \n=1
ﬁeBm,N

where (—). denotes an optional minus sign to be con-
sidered only when the optional conjugation (%), 1is

present, £ 2 [(<)if1,., (DInW]T, HG(F) 2
[(=)1%o, (F1)s ooor (—)NYon (Fn)]T, and 6, = 1 for ¥ = 0 and
6y = 0 for ¥ # 0. Furthermore, from (21), accounting for

(13) and the relationship

6 (-7 )) 8 (F)T1-FT1 7

)6

a-p+p s

| Bon () (B~ (F )0 8(a=FT1) 8,y oo omg

(22)
one obtains the input/output relation in terms of RD-
CSMPF’s:

Sg(F v =)y (H< W (=)n(e— 71 )HH‘*)” )nfn))

o

Toom (rdon (Hle— TN Y 5B(657(57)

ABEB;:,N

i =) . 23
-5 (F VT L= (=) oy (-)n(a-F T 1)) (23)

Equation (23) shows that the RD-CSMF Sy(f')nx de-
pends in general on cycle frequencies of the input time-series
whose values are 1elated to f'. However, in the special case
of LAPTV systems, accounting for (7), (23) reduces to

Sg(f v =,

ocoN

(HS,*;@N((—)N(a - £T1))

HH( ((

n=1

fn)) 53 o, (29)

and then the values of the input cycle frequencies that give
a contribution to the output RD-CSMF S3(f')xy are inde-
pendent of F' [5],[6].

The support in the («, f') space of the RD-CSMF
SH(F)n (given by (23)) can be written as

supp {5§(f’)N} = U

TgenN

{Supp {H§’2~((—)N(a _ 1))

~IIH o fa)l @on ((<)¥on (ar(e = £71 )))l}

ﬂ{ U swee{s5 (v57(7), }
BE€Bo, N
N{(e ) e Rx RV G5 )T1

+(_)N¢UN((—)N(a'—f/Tl)):ﬁi ﬁeBa:,N}} } )

. (25)
and then the following inclusion relationship holds:

supp {S;(f’)N} C U U {(a,f’) eRxRY! .

oeQN BEBa, N

5L+ (o (-)ar(a— £71) = 8}
(26)
Therefore, for the considered conjugation configuration, the
output time-series y(¢) can exhibit Nth-order WSCS with
cycle frequency « only if, for some o € Q¥ and 3 € By n,

the set Nt
{# eRY s

+H W bon(F)wla— FT)) =6} (27)

. N-1 .
has nonzero measure in R or has nonempty intersec-
tion with the -submanifold [3] of S% (¢£;,’/( f<-)'))N. In
particular, if the input time-series z(t) exhibits Nth-order
wide-sense stationarity for the given conjugation configura-
tion (i.e., S5 (F')x # 0 only for 8 = 0), from (26) it follows
that

supp {Si‘,(f’)N} - {(a, f)eR

ocQN

N-1
x R :
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B (F VL4 (Do (e - £71) = 0}
(28)
In such a case, the output time-series y(t) can exhibit Nth-
order WSCS with cycle frequency « only if, for at least one
value of o € ¥, the set

{FeR" w @ (snm

HOwton (e - FT) =0} (29)

has nonzero measure in R” ~? or has nonempty intersection
with the 0-submanifold of S, ( S,._,)'(f(_)'))N.

The wide-sense almost-cyclostationary time-series are
closed under LAPTYV transformations. In fact, when the
input time-series z(t) is wide-sense almost-cyclostationary
and, hence,

supp {50+ ) € {(6.F) e Rx R peBonl,
(30)
accounting for (7), it results that

supp {Séj(f’)N} c
U U {(a, f)eRxRY™ :a= ,B+o'(“)T1},

ocQN BEB, N
(31)
where o(-) 2 [(=)101, .-y (=)won]T. In addition, the wide-
sense almost-cyclostationary time-series are closed under
time scale changing. In fact, accounting for (10), one has

supp {S;(f’)N} C U {(a,f') ceRxRY ! . o= aﬂ}.

BEB,, N
(32)
When the considered linear time-variant system is strictly
bandlimited in f (and possibly in A), that is,

H(f,\) =0, [fl>B/2, VA (33)

the following inclusion relation for the support of S;( N
in the (o, f’) space holds:

supp {S5(F)w} C

N-1
U supp {H‘(,?N((——)N(a - f,Tl)) H Ht(ri)"((_)nfn)}

oeQN n=1

T\ N-1
C supp {rect (a——_g—l) 1;[1 rect (%)}

n

={(, f) eRxR"™" . Ja— £71/ < B/2,ful < B/2}

 {(e. #) eRxRY™ i |a| < NB/2,Ifal < B/2}.
(34)
To derive (34), it has been assumed without loss of gener-
ality that for any oy # o3 it results that @, () = @0, (A)

at most in a denumerable set of values of A and then, from
(33), it follows that

Hq(f) =0, |fl > B/2, Vo. (35)

Moreover, the last inclusion in (34) follows from
o = 71 2 la| = |71 > |a| - (N-1)B/2,  (36)
which holds for |f,| < B/2 (n = 1,..., N-1).

Equation (34) shows that the output time series y(¢) can-
not exhibit Nth-order WSCS with cycle frequencies « such
that || > N B/2 independently of the WSCS properties of
the input time-series.

In regard to the Nth-order cyclic temporal cross-moment
function (CTCMF) of the M output time-series y(t + 7,)
(n = 1,...,M) and the N — M input time-series z(t + 75)
(n=M+1,...,N) defined as

A

Ry g -y (T)w =
M N
<Hy(*)"(t+7’n) 11 m(*>n(t+fﬂ)e~i2mt>, (37)

n=1 n=M+1
accounting for (5), one has

/, M
Rwainoiv= [l fo 3 (T2

G'EQM n=1
Z Rﬁ([v(M)T,T(N—M)T]T)N
BEBs. N~
) :?fi ‘I/(.)M(T(M)—u(M),v(M))Mdu(M)dv(M), (38)
Ty EARAS UM

where the superscript (K) is the operator that transforms

a vector w = [wi, ..., wn]T into w(&) = [w1, ..., wg]T with
K <N.
The reduced-dimension CTCMF R 2y g (v na) (7w s

obtained setting 74 = 0 in :R/Z(M)w(N—M) (r)n. Moreover,
by Fourier transforming both sides of (38) and account-
ing for (13) and (22), one obtains the input/output relation
in terms of reduced-dimension cyclic spectral cross-moment
functions.
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