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RESUME

Cet article étudie la réalisation d’un lest qualitatif sur
le chaos a partir de tesls statistiques aussi simples que pos-
sible. Deuz tests complémentaires sont utilisés, l'un testant
la fractalité, Uautre la nonlinéarité d’un signal. Pour cha-
cun de ces tesls, des options soni proposées et leurs per-
formances discutées. Chacune est ameliorée chaque fois
que ¢’est possible en utilisant en complément les données
de substilution, qui donnent une information sur le validite
des résultats. Ces tests se révélent intéressants, mais une
recherche ullérieure est nécessaire afin d’améliorer encore
leur raprdité el leur flabulité.

1 Introduction

Nowadays, one of the biggest problems encountered when
dealing with chaos is detecting it in experimental data. All
methods aimed at this end (dimension computation, Ly-
apunov exponents) must be used with care, and are very
sensitive Lo many parameters, such as length of the data or
noise. Besides, at least from the authors’ knowledge, there
exists no reliable test on chaos, far less an efficient one.
The aim of this paper is to open the discussion on the subj-
ect, by proposing a new qualitative test based on statistical
methods, the Hurst or R/S analysis (1, 2] and the so-called
long-term correlation analysis [3] for testing the fractality
of the data, and the surrogate data method proposed by
Theiler in [4] for testing their nonlinearity. It is indeed very
difficult to design a single test for chaos, at least from the
current knowledge on the subject. There is however a way
out: chaos is defined as being a deterministic nonlinear pro-
cess, with self-similarity, or fractal nature. If one can find a
test for nonlinearity and fractality, and put them together,
the result should be a chaos test, hence the above propo-
sitions. After a brief theoretical description, each of these
methods is studied in terms of performance and speed, and
the best. combination of fractality and nonlinearity tests will
be proposed for the chaos detection procedure.

2 Fractality tests

One test on the fractal nature of a time series has been
developped in 1951, by Hurst [1]. Let {z} be a time series
of length N. Its mean and standard deviation are z,,, and
Lyq respectively. One defines the cumulative series of {}
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with respect to the mean by

k
ch,N = Z(xi - xmn)

i=1
The adjusted range is given by
R(N) = ma:clSkSN[X(k', N)] - minlSkSN[X(k, N)]
The rescaled range is then

R(N) R
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Hurst discovered that, in the case of a fractal series, the
rescaled range obeys the power law

g =c-N¥

where H is called the Hurst exponent. It thus suffices to
be able to compute the rescaled range R/S to obtain the
Hurst exponent H, which gives a measure of the fractality
of the time series. This computation is called the Hurst or
rescaled range analysis. H is in the interval between 0 and
1. When H is equal to 1/2, the series is a Gaussian process,
and when it is significantly higher than 1/2, the series is
fractal.

The Hurst analysis was tested on different signals, i.e. Gaus-
sian noise, fractional noise, a simple nonlinear process and
the Henon map, for two different lengths of the data, 1500C
and 5000 samples. The results are shown in the following

_table:
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H (15000 smp) | H (5000 smp)
gaussian n. 0.45 0.4
fractal n. 0.95 0.71
nonlin. proc. { 0.61 0.9
henon 0.82 0.28

If the results of H with 15000 samples data are relati-
vely good (the expected value for the Gaussian noise is 0.5,
and 0.92 for Henon, for instance) it is not the case when the
data length is shorter. In the latter case, the results cannot
be trusted anymore. The large difference between the the-
oretical and experimental results comes from the fact that
the Hurst equation is an asymptotical one. When the time
series used are of finite length, there are deviations from the
theoretical values, and the deviations are inversely propor-
tional to the length of the data.

Since most real-world data are of short length, the Hurst
analysis cannot be trusted as a fractality test. Hence the
idea of another test, proposed by Buldyrev et alin [3]. This
test, called the long-term correlation analysis, examines the
long-term correlations in a signal, just as the Hurst analysis
does. Anyway, it is more simple and allows to have short
Lirne series as input. First developed for the analysis of DNA
sequences [3], it can be easily extended to arbitrary time
series. The procedure therefore consists in first computing
the difference function d(!)

d(l) = yllo + 1) = y(lo)

where y(!) is the original time series, then finding the mean
square fluctuation function F({)

P21y = &) — Ay’

Where the horizontal bar stands for the average. Here,
the average is computed according to different values of {p.
Three cases may occur: 1If F(I) ~ ¢%® the signal is random,
this is a random walk. If F(l) ~ e~!/8 there are corre-
lations extending up to a characteristic range R, but the
asymplotic behaviour is unchanged from the purely ran-
dom case. At last, if F(I) ~ [*, there are ’infinite-range’
correlations and the signal is fractal, if « # 0.5. These pro-
perties can be observed on the shape of the loglog plot of
F(l): if the signal is random, log( £ (1)) looks like a straight
horizontal line or a random curve. If the signal si fractal, it
looks like a straight line, with a slope different from o = 0.5.

The typical results obtained for a fractal or chaotic
signal are shown on fig 1, where one can see the log(F({))
plot.

The curve obtained is not exactly a straight line because
there is saturation after some point, This probably comes
from the fact that the time series is of finite length: the long-
termn correlations can exist only up to a certain range, due
to the short length of the data (5000 samples). Neverthe-
less, one can clearly see the difference between this curve
and the ones corresponding to non-fractal signals (fig. 2.a
is the result for a Gaussian noise, fig. 2.b is the result for a
nonlinear process).
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Figure 1: Long-term correlation analysis for a fractional
noise

i

Figure 2: a) Fractal landscape and b) local slope for a Gaus-
slan noise

In the same way, on can see by comparing figures 3 and 1
that this procedure is unable to discriminate between a fra-
ctional noise and a chaotic signal.Besides, because of the fi-
nite length of the data, it can confuse actual fractal signals
with signals having correlations up to a certain caracteristic
range. But it will not confuse a fractal or chaotic signal with
a non-fractal one.
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Figure 3:
system

Long-term correlation analysis for the Lorenz

This test can be improved by using surrogate data, so
that one can check the significance of the results. It consists
in testing a time series by confronting the data to a null hy-
pothesis. In a few words, one specifies the null hypothesis
for the process under study, then generates surrogate data
sets that share most of the properties of the original time
series, but are consistent with the hypothesis. Discrimina-
ting statistics are then computed to compare actual and



surrogate data. If the difference between the statistics is
significant, the null hypothesis is rejected. The significance
is computed by
|F () = Fmn(l)]

Fya(l)

where F'({) is the value of the statistics for the actual data,
Fnn(f) the mean of the statistics for the surrogate data,
while F;4({) is its standard deviation. The significance of
the long-term correlation analysis results for a fractional
noise are displayed in figure 4.a, while figure 4.b shows the
same parameter for the Gaussian noise.

SIG(l) =
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Figure 4: Significance vs 1 for a) fractional noise, b) Gaus-
sian noise)

This shows clearly that one can have confidence in the
results obtained by the long-term correlation analysis, since
the significance is very high for the fractional noise, and not
for the (Gaussian noise. In summary, one can say that this
test 1s much more reliable than the Hurst analysis, since it
discriminates correctly between the signals for much shorter
data. Even if it can be flawed in some cases, it is not an
important defect, since it can misclassify non-fractal signals
as fractal ones, and not the opposite. And our interest in is
a preliminary test, not obligatorily a decisive one.

3 Nonlinearity tests

A suitable method for testing nonlinearity is the surro-
gate data method proposed by Theiler in [4]. It consists
in testing a time series by confronting the data to a null
hypothesis. For testing nonlinearity, several null hypothe-
ses need to be considered. The procedure can be separated
into 3 steps: first, specifying a null hypothesis to which
the data must be confronted. In the second step, surro-
gate data are generated, which share the same properties
as the actunal data, except the one necessary to make them
consistent. with the hypothesis. At last, a discriminating
statistics 1s computed for the actual and surrogate data,
and the results are compared. If the statistics has/have
significantly different values for the signal and its surroga-
tes, the null hypothesis can be rejected. As chaos is the
subject of interest here, the discriminating statistics used
are the local intrinsic dimension (LID) [5], and the compu-
tation of the largest Lyapunov exponent [6].Three different
null hypotheses were chosen here: first, the hypothesis of a
I1D noise with arbitrary amplitude distribution. Then the
one of a linear process, and last a nonlinear transform of a
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linear gaussian noise. If these three hypotheses are rejected,
one can conclude that the process under study is nonlingar.
The surrogate data corresponding to each proposition were
computed as proposed in [4]. The significance is computed
in the same way as for the long-term correlation analysis.

This method is well-known, which makes it unnecessary to
show complete results. The results given here will therefore
be only thoses relevant to the aims of this work, namely the
discrimination between fractional noise and chaotic signals,
which the fractality tests confuse. When applied to a fra-
ctional noise, the Local Intrinsic Dimension computation gi-
ves the results of table 3 for the null hypothesis of arbitrary
noise, and the results of table 3 for the linear dynamics hy-
pothesis, each for the fractional noise and the Henon map:

Henon | fractional
LID 2.1 1.15
mean(LID) | 1.00 1.00
difference 110% | 15%
significance | 60.8 38.51

Henon | fractional
LID 2.1 1.15
mean(LID) | 1.0036 | 1.0064
difference 109.5% | 14.4%
significance | 85.3 2.1

In each table, LID stands for Local Intrinsic Dimension
obtained for the actual data, mean(LID) for the mean LID
of the surrogate data. Difference stands for the difference
between the two preceding results, while significance is the
significance of this difference.

It is clear from both tables that the Henon map is cha-
otic, since the difference between the actual LID and the
surrogates mean LID is important and significant. On the
contrary, the fractional noise is correctly identified as be-
ing noise, since the difference and significance are low for
the test against noise. The difference remains low between
the actual and mean LID in the case of the linear dynamics
tests, but since the significance is equaly low, the result
is irrelevant. The Maximum Lyapunov Exponent (MLE)
computation results can be seen on the following figures:

The curves displayed on figures 5.2 and 5.b show the
average distance between neighboring points according with
respect to time. Since the method supposes that the lar-
gest Lyapunov exponent is positive, the curves have a po-
sitive slope whatever the signal. The chaotic signal can be
recognised in that the curve doesn’t vary for different re-
construction dimensions. The slope of the linear part of the
curve gives the Lyapunov exponent. One can see that in
both cases the mean curves of the surrogate data (dashed
line for the noise test, dotted line for the linear dynamics
one) are clearly different from the actual one (full line). But
for Henon, the significance is very high for both hypothesis,
while it is low for the fractional noise, when confronted with
the noise hypothesis.
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Figure 5: Lyapunov calculation results for a) the Henon
map, b) the fractional noise. (full line: actual values, dashed
line: mean value for the noise test, dotted line: mean value
for the linear dynamics test

Theiler’s surrogate data method is known as being one
of the most reliable test for nonlinearity in possible chaotic
signals. From our point of view, it nevertheless suffers from
some very unportant drawbacks. It is in a sense redundant
with its own statistics, since both LID and MLE can be
rather reliable tests for chaos, as was shown in [7]. The
surrogate data test is then not necessary. Besides, Theiler’s
method suffers from an important flaw, with respect to the
goal of this paper: it uses chaos tools for detecting chaos,
when the goal was to avoid this use, since using them me-
ans making some a prior: hypotheses on the nature of the
signal. Finally, its computation load is too high for a simple
fast qualitative test.

Very recently, a method has been proposed in [8], which
could be a good alternative to the surrogate data proce-
dure. This method tests for nonlinearity by comparing the
redundancy and the linear redundancy wvs the lag for diffe-
rent reconstruction dimensions. If both families of curves
have the same shape, the signal under study is linear; in
the opposite case, it is a nonlinear dynamical system. This
procedure has the advantage of using no chaotic tool, only
statistics ones, and seems, according to preliminary tests,
to be much faster than Theiler’s. However, it remains to be
confirmed that it discriminates correctly between stochastic
or deterministic nonlinear processes and other types of pro-
cesses.

4 Discussion

It has been shown that it is possible to detect chaos while
avoiding as much as possible the use of chaos oriented tools.
Some recent publications [8] let think that detecting chaos
without using any chaos oriented tool is possible. Besides,
the results presented here show that the basic idea behind
this work is valid, e.g. that two complementary tests, one
on fractality, the other on nonlinearity, help detect chaos in
time series, with no a priori knowledge of their properties.
The fractality test allows the discrimination between fractal
and non-fractal processes, thus between nonlinear proces-
ses and chaos. The nonlinarity test, for its part, allows a
correct, discrimination between fractional noise and chaos,
which the fractality test cannot do. Of course, both clas-
sify correctly non-fractal noise, deterministic or stochastic

linear processes as not being chaotic.

In what concerns the choice of the proper set of tests,
it is obvious that the best {ractality test is the long-term
correlation analysis. The classical Hurst analysis is indeed
unreliable as soon as the data consist of less than 10000
samples, which is often the case in experimental situations.
Concerning the nonlinearity test, the reliability of Theiler’s
method is well known, but it suffers from a heavy compu-
tation load. If the redundancy method is demonstrated to
be reasonably reliable, it should be prefered to the former:
The goal is not, at least for now, to have a 100% reliable
test, but to have a fast qualitative test that can help decide
if it is worth studying the chaotic aspect of a signal or not.

However, these tests are not perfect yet. They need
further study to assess their robustness with respect to noise
or length of the data, and they suffer from flaws that should
be removed. For instance, the long-term correlation method
can, as was said before, misinterpret some signals with long-
term correlations up to a given range as infinite-range cor-
relations ones, and thus classify the former as being fractal.
Besides, it would be interesting to develop innovative tests
that would be faster and/or more reliable. Since the goal
of this paper was to present essentially qualitative tests,
finding a numerical parameter was not a priority, but this
would be a important progress in the search for a reliable
test. A first step was made in using the surrogate data tests
whenever possible, but it still doesn’t remove all possibility
of misinterpretation due to the user’s subjectivity.
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