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RESUME

Dans cet article nous adressons le probleme de ’évaluation
analytique des performances de lestime d’un parameétre
inconnu avec les statistiques d’ordre supérieur (SOS). On
a evalué d’abord la matrice de covariance des cumulants
estimés sur un echantillon, qu'on a obtenue avec un algo-
rithme pour un langage de manipulation symbolique.

Enfin on présente de résultats de lanalyse des perfor-
mances de I’éstimateur du temps de retour employant les

cumulants du quatrieéme ordre,

1. INTRODUCTION

Application of higher order statistics (HOS) to estima-
tion problems is widely diffused in many field of inter-
est. While the introduction of HOS is justified by several
motivations, ranging from their blind Gaussian rejection
capabilities, sensitivity to the phase of linear transforma-
tions, higher detection capabilities, efc., the lack of gen-
eral means for performance evaluation does not allow for
objective measurement of the overall quality of the param-
eter estimates and, moreover, does not allows for system-
atic comparison of different estimation procedures applied
to the same problem. In addition, several near-optimal
techniques base the optimization phase on the knowledge
of the covariances of the estimated HOS. (see for instance

1, 2]).

The main aim of this contribution is to provide an
effective means of evaluation of the covariances of cumu-
lant’s estimates obtained from a finite sample of observa-

tions. The main result consists in explicit formulas for the
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ABSTRACT

In this paper we address the problem of analytically eval-
uating the performance of parameters estimates based
on Higher Order Statistics (HOS). In particular the co-
variance matrix of HOS sample cumulants is computed
through an algorithm for symbolic manipulation pack-
ages.

Finally, the method is applied to the performance analysis
of time delay estimators based on fourth-order cumulants.

covariances of the sample cumulants in terms of the true
cumulants (and moments). Strictly speaking the formulas
are asymptotically exact, nevertheless they show a suffi-
cient degree of accuracy for finite sample sizes of practical
interest.

The formulas have been symbolically implemented us-
ing a standard symbolic manipulation packages (i.e. Math-
ematica), in order to provide effective computation capa-
bilities. During the preparation of this work, an analogous
tool has been employed in [3].

We remark that the obtained result is asymptotically
exact; for finite sample size, the only approximation in-
troducted is the linearization of the relation between the
cumulants and the related moments. We notice that the
metodology adopted here is quite general and produces a

useful closed form expression.

2. HOS ESTIMATORS PERFORMANCE

Let us summarize the guidelines of the overall derivation
of the above cited formulas.

The covariance matrix of sample cumulants is eval-
uated by relating it to the covariance matrix of sample
moments.

Let N be the number of available measurements. It is
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well known that the sample moments are strongly consis-
tent estimates of moments; the sequence of random vari-
ables obtained for increasing N is asymptotically normally
distributed (see for instance [4]).

Under these assumptions, also the sequence of the
sample cumulants is asymptotically normally distribut-
ed, and the covariance matrix I' of the sample cumulants
is asymptotically given by the covariance matrix of the
sample moments M, transformed, through a similarity
transformation, by the Jacobian J of the non linear func-
tion relating the generic multivariate cumulant to a set of
multivariate moments, i.e. I' = J-M-J7T (see for instance
[4]). Thus, for large N, the computation of I' reduces to
the evaluation of J and M.

In this respect, to obtain J, we first derive the expres-
sion of the single multivariate cumulant as a function of
the related moments.

Since, for a generic r.v. «, the univariate cumulant !

in terms of the corresponding univariate moments is (see

[5):
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the multivariate cumulant can be computed by recursive
application of a symbolic differentiation rule to the pre-
vious relation, as indicated in [5]. Then, the Jacobian J
is obtained by differentiating the multivariate cumulant
w.r.t. the multivariate moments.

To evaluate the covariance matrix of the sample mo-

ments, let us denote by uz;- 52", pyry, the multivari-
ate moments of the variables (z1,...,2p), (¥1,.-.,¥p), of

order (m1,...,mp) and (r1,...,ry), respectively. Let
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If the sample is drawn from a stationary process, the ex-
this

k = ¢ — 7, and the above expression simplifies as follows

pected value of product depends only on
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Therefore, the generic element of the cumulant covariance
matrix is expressed as sum of products of multivariate
moments, i.e as a combination of the true cumulants of
the originary random variables

The only approximation introduced in the estimation
of the covariance of the sample cumulants is the lineariza-
tion of the relationship between sample cumulants and
sample moments. The lincarization error is negligible
when the estimation error variance is sufficiently small;
then, for sufficiently high SNR, the expression of the sam-
ple cumulants covariance stands even for a sufficiently

large, but finite, number of measurements N.

3. TIME DELAY ESTIMATION

Let us refer to the following continous time model of sig-

nals received at two sensors:

I

z(t)

y(t) =

s(t) + wi(t)
s(t—- D) + walt)

where z(t), y(t) contain two differently delayed versions of
the
w1 (), wa(t).
alizations of zero mean stationary processes. The noises

same signal, and two measurement noises

that both the signal and the noises are re-

are Gaussian, and can be temporally and spatially corre-
lated. Finally, the signal and the noises are statistically
independent.

The equivalent discrete time model is:

s[n] + wiln] (1)
spln] + waln], (2)

8
3
I

where s[n], spln] represent two sequences obtained by
sampling the signal s(¢) and its delayed version s(t — D)
with sample period T.

The problem is to find an estimate D of the actual time
delay D, or, equivalently, an estimate d of the differential
delay d with respect to a coarse approximation 4., of the
time delay D, from a finite set of samples of the signal.

Here, we consider the estimator reported in [6] that

maximizes the fourth-order cumulants of the sum



zr[n] + y[n], where z,[r] denotes the sampled version of
the delayed analog signal z(¢ — 7). Since we are dealing
with discrete-time observations, we refine the coarse TDE
estimator discussed in .[6], by interpolating the sampled
estimates of the fourth-order cumulant with a parabole
and locating the vertex. In particular, let T be the sample
period of the signal, and & be the distance between the
samples of the fourth-order cumulants. Let i, correspond
to the maximum of the fourth—order sample cumulants,
i.e. i;mT be a coarse estimate of the true delay D, and d
be the incremental delay d = D - i,,T.

Let 4,0, w be the sample fourth—order cumulants for
7 equal to ¢, T + 6,4,,T — 0,1, T, respectively, i.e.

e —

u = CUM4(.’L’Z'MT+9[’HI] + y[n])
'Ilj = m4 (:L'imT_g[’n] [n])

CUM 4(2s,,7[n] + y[n))-

w

where m denotes sample cumulant. Then, by fitting
the with  the
through 4, 0, w, we obtain the following TDE

fourth-order cumulants parabole

Following the guidelines of [7], we can express the bias and
the variance of the estimated incremental delay d in terms
of the expected values U,V,W and covariances HLU’ ) of
the statistics 4, 9,9 (see Egs. (17)-(21) in [7] ), that can
be written in terms of cumulants of the signals involved.
For simplicity, in the following we will refer to integer
T=1.
s(n) is stationary and can be modeled as a signal obtained

delay D = i, T and will assume 8 = Whenever

by driving a linear system h(n) with an ii.d. sequence

so(n), the expected values of the statistics are:
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Following [6], we model the noise spatial correlation by
means of a linear filter so that

wa[n] = hseln] x wi[n], 3)
and the covariance between wi[r] and wq[n] is

K [K] = 5D K] % o[- k].
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Figure 1: White Signal and Spatially Perfectly Correlated

White Noises: N - Var vs. SNR.

Obviously, when wi[n] and wy[n] are spatially uncorre-
lated hse[k] = 0, while when they are perfectly spatially

correlated hg.[k] = 6[k]. Under these hypotheses, the generic

element of the covariance matrix of the sample cumulants

is:
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For the sake of the comprehension, we report here the
expression of the TDE variance for d = 0

~ 0 1 2
@ = g5 (7= 2+ el)
where 02 = nLlul) and 02 = M(w’ ) are the variance of ¢ and

0, respectively. For visual reference, we report here the
asymptotic variances, and biases, of the TDE estimator,
for an i.i.d. zero—mean one-sided exponential sequence
sp(n). In this case, the univariate cumulant for the signal
distribution, is

w{) = o] Eg?n,)

(r— 1L (5)

In Fig.(1), signals and noise are white; noises are perfectly
spatially correlated. The bias is zero and, interestingly
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Figure 2: Coloured Signal and Spatially Correlated

Coloured Noises: N - Bias vs SNR. The colouring filter is
low—pass with cutoff fo = 0.757.
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Figure 3: Coloured Signal and Spatially Correlated

Coloured Noises: N - Var vs. SNR. The colouring filter
18 low-pass with cutoff fo = 0.7567.

enough, it can be seen from the formulas that the variance
turns out to be the same also if the noises are spatially
uncorrelated.

In Figs.2-3, signal and noise are low-pass filtered with
cutoff frequency f. = 0.757, while in Figs.4-5 the cut-
off frequency is f. = 0.487; a ten taps filter models the
spatial correlation between the noises (see [6]).
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Figure 4: Coloured Signal and Spatially Correlated

Coloured Noises: N - Bias vs. SNR. The colouring fil-
ter is low-pass with cutoff f. = 0.48x.
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Figure b: Coloured Signal and Spatially Correlated

‘Coloured Noises: N - Var vs. SNR. The colouring filter
18 low—pass with cutoff fo = 0.48mw.
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