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RESUME?

Cette communication est consacrée au probléme d’identifi-
cation aveugle de systémes RIF & phases mixtes. Deux al-
gorithmes basés sur les statistiques d’ordre 2 du signal regu
(qui est suréchantilloné et donc cyclostationnaire) sont com-
parés & une approche utilisant les statistiques d’ordre 4 du
signal stationnaire requ. Alors que les premiers ne peuvent
identifier certains systémes a partir de leurs statistiques cy-
clostationnaires d’ordre 2, les derniers ont la réputation de
nécessiter un nombre plus élevé d’échantillons de signal pour
avoir une variance d’estimation comparable. Pourtant, il
sera démontré que Palgorithme d’ordre 4 (EVI) méne & une
qualité d’estimation supérieure & partir du méme nombre
d’échantillons lorsqu’il s’agit de canaux de transmission réels
dans des systémes de communication numérique.

1 INTRODUCTION

The fundamental idea of blind system identification (channel
estimation) is to derive the channel characteristics from the
received signal only, i.e. without access to the source signal.
Depending on the different ways to extract information from
the received signal, two classes of approaches can be defined:

Class A: When the received signal is sampled at the sym-
bol rate 1/T, the resulting sequence is stationary. Since 2nd
order statistics of stationary signals are inadequate for the
identification of the complete channel characteristics {(includ-
ing phase information), class A approaches are based either
explicitely or implicitely on higher order statistics (HOS).
Higher order cumulants contain the complete information on
the channel’s magnitude and phase provided that the source
signal’s distribution is non-Gaussian.

Class B: When the sampling period is a fraction of T', the
resulting oversampled received sequence is cyclostationary.
Generally, second order cyclostationary stetistics (SOCS)
are sufficient to retrieve the complete channel characteristics,
but there are certain channels that can not be identified.

LCompressed postscript files of our publications are readily available
over Internet via anonymous ftp to ‘ftp.et2.tu-harburg.de’ or via
world wide web to ‘www.et2.tu-harburg.de’.

2This work is supported by the German National Science Foundation
(DFG-contract # Ka 841/2).

ABSTRACT?

This paper addresses the problem of blind identification of
mixed phase time-invariant FIR systems. Two algorithms
based on 2nd order statistics of the oversampled cyclosta-
tionary received signal are compared with an efficient ap-
proach exploiting 4th order statistics of the stationary re-
ceived signal sampled at symbol rate. While the former suf-
fer from systems which can not be identified from 2nd order
cyclostationary statistics, the latter are said to require more
samples of the received signal to obtain comparable levels of
estimation variance. However, we show in this paper that
the approach relying on 4th order statistics (EVT) delivers a
superior estimation performance based on the same number
of -samples when it comes to the identification of realistic
transmission channels in digital communication systems.

Many approaches of either class have been proposed in re-
cent years. The purpose of this paper is to investigate the
performance of two fast class B algorithms and to compare
it with an efficient class A approach:

— SRM: Class B SUBCHANNEL RESPONSE MATCHING
algorithm by Schell, Smith and Gardner [1}; a
similar appr. was proposed by Baccala et al [2],

- TXK: Class B TXK-METHOD suggested by Tong, Xu
and Kailath (3],

- EVI: Class A EIGENVECTOR APPROACH TO BLIND

IDENTIFICATION by Jelonnek, Boss and Kam-
meyer [4, 5] based on 4th order statistics.

Application: In this paper, the problem of blind system
identification is regarded from the viewpoint of digital com-
munications. Due to the equivalent baseband representation
of the bandpass communication system, all signals and sys-
tems take complex values.

MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION {MLSE,
Viterbi detection) represents the optimum procedure to re-
move intersymbol interference from a received digital com-
munication signal. It requires the estimation of the equiva-
lent symbol rate impulse response of the (mixed phase multi-
path) transmission channel. New horizons are opened, if this
systém identification problem is solved blindly, i.e. without
training sequences used in state-of-the-art communication
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systems. Note that a major criterion for the selection of
the above algorithms is their ability to deliver reliable chan-
nel estimates on the basis of few samples, because commu-
nication channels can only be considered short-term time-
inyariant. Also note that class A algorithms based on 3rd
order statistics can not be applied due to the zero skewness
of most digital communication signals. )

After a detailed problem statement in sec. 2, we demonstrate
in section 3 the asymptotic “estimation” performance, where
true covariance and cumulant sequences are used by the re-
spective approach. The algorithms’ behaviour is explained
(i) in the case of “singular” channels, (ii) when the chan-
nel order is overestimated and (iii) when additive noise is
present. Particular attention is devoted to the sensitivity of
the channel estimates with respect to these influences when
the covariance and cumulant sequences are estimated from a
finite number of samples (section 4). Finally, the approaches
are applied to a realistic communication channel.

2 PROBLEM STATEMENT

Assumptions: Consider the digital communication model
where, each symbol period T, the stationary® i.i.d. source se-
quence d(k) takes a (complex) value from a finite set?. The
composite transmission channel is described by a continuous-
time causal time-invariant finite impulse response h.(%).
Now, sampling the continuous-time channel output signal
z(t) = Yo, d{k)he(t — kT) at M times the symbol rate
to obtain z(i) = z.(t)|;=s7/m can be described by convolv-
ing the oversampled source sequence with the discrete-time
channel impulse response h(i) = hc(t)|;—ir/nm, as depicted
in Fig. 1. Let the order of h(i) be denoted ¢q. Note that
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Figure 1: Oversampled digital comm. sequence y(i)

the time indices k and ¢ refer to samples spaced T" and iZj/M
seconds apart, respectively. The channel output sequence
z(i) is corrupted by independent additive stationary noise
n(i). The oversampled digital communication sequence y(7)
is cyclostationary (as is z.(t) and z(7)).
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Figure 2: “Time Series Representation” of y(7)

3Generally, references to stationarity or cyclostationarity imply the
respective wide sense property (i.e. first and second order). However,
class A approaches require higher orders of (cyclo)stationarity.

4To simplify the description, all processes are assumed to be zero mean.

According to Gardner’s TIME SERIES REPRESENTATION |6,
Sec. 12.6], y(i) can be decomposed into M stationary se-
quences y;(k),---,ym(k) (see Fig. 2), where

yu(k) =z, (k) +nu(k) =

The sequences x,(k), n,(k), and y,(k) with T-spaced sam-
ples denote the p-th polyphase component of the respective
signal sampled at M times the symbol rate, e.g.

d(k) * by (k) + nu(k). (1)

Yu(k) = y(Dlimkmp-1 = YeOlemkrsu-n/mr - (2)
Equivalently, h, (k) represents the p-th polyphase subchannel
of h(i). Let H,(z) and H(z) denote their z transforms.

Objective:
Y1 (k), .

Given solely the data y(i) (or equivalently,
,ym(k)), estimate h(Z) (or hy(k), -, ha(k)).

3 ASYMPTOTIC ESTIMATION
PERFORMANCE

“Singular” channels: Tong et al. and Tugnait have
proven [7, 8] that the finite impulse response k(i) with uncor-
related input is not identifiable by class B algorithms from
the cyclostationary correlation sequence of the M times over-
sampled seq. y(7), if one of the following condition holds.

(1) H(z) has a set of M zeros located symmetrically on a
circle with the complex plane’s origin in its center. This
is equivalent to stating that the M polyphase subchan-
nels Hqy(z), -

(2) The channel consists of time delays that are integer
multiples of the symbol period T.

» Har(2) have at least one common zero.

(3) If M is even and the channel consists of time delays
equaling integer multiples of T'/2.

Note that channels according to (1) or (3) can still be iden-
tified from its SOCS by altering the oversampling factor M.
However, channels (2) are not identifiable irrespective of how
the sampling rate is chosen [&].

For a QPSK transmission and two channel examples (¢ =
8), Fig. 3 shows the “estimation” results obtained by SRM,
TXK® and EVI when true correlation and cumulant values
are used and the oversampling factor is chosen to be M = 3.
True and estimated zeros of H(z) are indicated by circles

(“o”) and crosses (“x”), resp., in the complex plane.

The minimum distance between subchannel zeros being 0.17,
channel C1 has no common zeros in its polyphase subchan-
nels HE(2),---, H{'(2). From the superimposed symbols
in Fig. 3a to ¢, we realize that all channel zeros are perfectly
identified. Although no order overestimation is assumed
here, TXK and EVI introduce negligible zeros in z = 0 and
|z] = oo (some estimated zeros outside the displayed section
of the complex plane are given in brackets in Fig. 3b and ¢).

For channel C3 in Figures 3d to f, one zero in each subchan-
nel HY'(z) is shifted to coincide in z = 0.9e~/7/4. Thus,
H%%(z) does have three zeros located symmetrically on a

Swhere the param. m is the observation period in multiples of T/M.
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Figure 3: Asymptotic “estimation” results

circle around z = 0. From Fig. 3d, we realize that SRM can
not identify these zeros. Its cost function assumes the min-
imum value with two channel estimates, both of which fail
to identify the ring of zeros. Instead, an erroneous ring of
zeros is introduced. Due to a rank deficiency of a correlation
matrix, TXK estimates all zeros with a bias, which is non-
negligible for the max. phase zeros and those corresponding
to common subchannel zeros (Fig. 3e). It is obvious from
Fig. 3f that EVI does not suffer from singular channels.

Channel order overestimation: For the Fig. 3g to i, the
order g of h€1(3) is overestimated by Aq = § — ¢ = 3. From
Fig. 3h and i, we see that TXK and EVI are robust. This
must be emphasized, because knowledge of the order is of
utmost importance to many identification approaches. As
an overestimation of the order of k(i) by Agq > M intro-
duces [Aq/M ] common zeros in z = 0 into the polyphase
subchannels, this is a major problem with many class B ap-
proaches (such as SRM, see Fig. 3g). Just as in Fig. 3d,
SRM fails to identify the common subchannel zeros.

Additive noise: The asymptotic solution of the SRM and
TXK methods is not influenced by independent stationary
additive white noise. The SRM’s solution (i.e. the least sig-
nificant eigenvector of a correlation matrix) does not change
with white noise, whereas TXK incorporates an attempt to
cancel the degradation of the correlation function due to
white noise. Although the subtraction of the estimated noise
power from the appropriate correlation values could easily
be incorporated into EVI too, the degradation of EVI’s solu-
tion due to white noise is minor anyway [4]. Finally, coloured
noise degrades the solution of all algorithms.

4 ESTIMATION PERFORMANCE
BASED ON FINITE DATA BLOCKS

As mentioned above, singular channels can not be identified
by class B approaches, even if the true correlation sequence
was available. Now, if it is estimated from a finite number
of samples, the variance of the estimated zeros will be in-
creased considerably even if subchannel zeros are “close” to
each other rather than being identical. The closer they are
allowed to be spaced for a given algorithm to successfully
identify them, the more samples are required for the cor-
relation estimates. On the other hand, EVI’s performance
does not depend on the closeness of subchannel zeros.

For a QPSK transmission and two channel examples, Fig. 4
displays the estimation results based on finite data blocks
and M = 3. While channel C3 is critical due to its com-
mon subchannel zeros in z = 0.9 e~I7/%, channel C2 has a
distance of 0.073 between the closest subchannel zeros. For
each of the 100 Monte-Carlo runs, the steady state channel
output sequence z (%) is corrupted by AWGN according to a
given SNR. Then, L samples of the resulting sequence y(z)
are used to estimate the correlation and cumulant values re-
quired by the respective approach. Estimated zeros of H(z)
are marked with dots (“-”) in Figure 4, while their mean
values are indicated by asterisks (“x”}.

Without noise and L = 1200, the superimposed symbols
in Fig. 4a to c reveal that all approaches identify the zeros
of H®?(z) quite satisfactorily®. However, due to the finite
value of L, SRM estimates the three zeros corresponding to
closely spaced subchannel zeros with non-zero bias and an
increased std deviation (¢ = 0.2). Although 1200 samples
seem to be sufficient for TXK and EVI, the maximum phase
zeros are estimated with increased standard deviation.

For Fig. 4d to f, SNR is set to 10dB. Although 9000 sam-
ples of y(7) are used, SRM tends to scatter the estimates of
the close subchannel zeros along the unit circle of the com-
plex plane. TXK delivers biased estimates of those and the
max. phase zeros. Here, EVI yields the best result (Fig. 4f).

Fig. 4g to | depict the results for the critical channel C3,
where Fig. g to i show the noiseless case with L = 5400 while
Fig. j to 1 display the noisy case (SNR=10dB, L = 9000).
As stated above, SRM and TXK are incapable of identifying
the ring of 3 equidistant zeros. Instead, SRM estimates with
negligible variance 3 wrong zeros on the unit circle (Fig. 4g),
which are scattered all along the unit circle when noise is
present (Fig. 4j). With or without noise, TXK’s estimation
of both the ring of zeros and the max. phase zeros is biased
(Fig. 4h, k). Again, EVI delivers the most favourable result.

In Fig. 4m to 4o, the order of C2 is overestimated by Ag = 3.
As 1200 samples are used, they can be compared with Fig. 4a
to ¢. From Fig. 4m, we note that SRM estimates a wrong
ring of zeros on the unit circle rather than the 3 zeros in
the origin. On the other hand, TXK and EVI yield results
comparable to those in Fig. 4b and ¢ (as indicated in sec. 3).

8For channel C1 in section 3, a few hundred samples are sufficient.
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Figure 4: Estimation performance of SRM, TXK and EVI

We conclude with the estimation of a realistic (¢ = 34) bad
urban communication ch. from 1200 samples (M = 2). Fig. 5
shows the true (dashed lines) and estimated magn. spectra
(in dB) in terms of norm. frequency. The mean=+std.dev. val-
ues are represented by solid and dotted lines, respectively.
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Figure 5: Estimation of a bad urban comm. channel

Although all approaches successfully identify the zeros close
to the unit circle, SRM undermines its result by adding many
spurious zeros on the unit circle. Both TXK and EVI yield
reliable estimates, but EVI performs slightly better in terms
of bias and variance. Note that TXK benefits from the rela-
tively long min. distance between subchannel zeros (0.085).
Thus, in contrast to the wide-spread opinion that class A
approaches using 4th order statistics require too many sam-
ples for a satisfactory performance, Fig. 5 reveals that EVI
is capable of identifying this frequency selective multipath
channel from blocklengths as required by class B algorithms.

5 CONCLUSION & FURTHER WORK

In summary, we can state that neither SRM nor TXK are ca-
pable of estimating channels with closely spaced subchannel
zeros. However, this ability may be crucial when it comes
to the identification of communication channels. It is also
clear from the above simulation results that HOS-based al-
gorithms do not principally require blocklengths higher than
those required by approaches based on 2nd order statistics.

In future, we will examine the influence of coloured noise.
We will also investigate how the different channel estimators
can be used for MLSE in the receiver of a dig. comm. system.
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