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RESUME

L'estimation du spectre de signaux quasi périodiques peut

étre améliorée par la sur-détermination du modéle
AutoRegressive dans le contexte d'analyse a prédiction
linéaire.
Dans cet étude on propose l'addition de termes de prediction 4
"longue distance", ce qui se traduit en modéles d'ordre élevé
avec une modeste extension des systémes d'équations normaux.
Comme dans toutes mesures de type interférometrique, cette
procedure comporte la présence d'ambiguités qui peuvent étre
eliminées par I'exploitation d'information a priori. La méthode
est illustrée sur deux cas simples de processus AR & bande
étroite et de composants harmoniques proches.

1. INTRODUCTION

Well known parametric spectral analysis techniques for
stationary time series are based on the minimisation of the linear
prediction error. This criterion leads to the conventional AR
solutions. These methods belong to the class of the super
resolution techniques, because they fit the available data to
autocorrelation model of infinite duration, so that the spectra are
not affected by windowing effects.

For this reason, AR methods are well suited for high resolution
estimation from relatively short sequences of data. In particular,
they are employed for detection and estimation of closely
spaced sinusoidal signals in noise.

Frequencies are determined by resolving a set of normal
equations and then by finding the zeroes of a polynomial
formed with the computed LP parameters.

It is well known that in presence of noise the resolution
capability of the predictive harmonic retrieval techniques is
improved by extending the number of equations L, ie. the
number of estimated autocorrelation lags beyond the minimum
required by the order of the AR model ( for M harmonics, the
minimum value of L is 2 M+1 ).

From a theoretical point of view, the resolution capability of the
estimate increases with the number of AR extra-poles, but it is
limited in practice by the worsening of the autocorrelation
estimates due to the limited set of available data and by the
increased computational effort. The accuracy of such estimates
can be enhanced by suppressing noise in the covariance matrix
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eigenspace, exploiting the a priori information about the actual
number of sinusoids [1].

More recently, the problem of resolution enhancement has been
approached by undersampling subband filtered versions of the
input signal and by applying the TLS-Prony procedure to these
single subband filtered sequences. Advantages can be achieved
as single band estimation is replaced by several lower-order less
computationally complex estimators [3]. In [5], the technique of
undersampling the autocorrelation function has been adopted in
order to modify the poles distribution in the z-plane.

In this contribution, we show that significant resolution
improvement can be achieved for periodic and near periodic
signals with a relatively small computational extra effort.

In essence, we increase the degree of the AR polynomials, i.e.
the spectral order, incrementing by a small amount the number
of normal equations L. This is done by inserting in the
predictive model "long distance terms" corresponding to those
lags where maxima of the autocorrelation function occur.

In other words, we explore here the possibility of inserting an
interferometric concept into the AR spectra estimates.

This is inspired to the strategy employed in advanced linear
prediction based speech coders like Multipulse LPC and CELP.
Such coders represent the speech signals with a predictive
model. The speech signal is modeled as a IIR linear system
excited by a signal approximating the prediction residual: It has
long been recognised that the prediction error energy is reduced
by adding to the usual IIR filter modeling the reverberant effects
of the acoustic cavities of the so called "vocal tract" a "long
term" predictor which takes into account the basic periodicity of
the "voiced sounds" [2]. The addition of long term prediction
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contributions may improve performance of many other
applications of linear predictive models, such as spectrum
estimation, harmonic retrieval, direction of arrival (DOA)
estimation of pl'anewaves from sensor arrays, etc. . Here, we
limit our analysis to spectral analysis of time series
characterized by near periodic observations. More specifically,
we refer to two cases of narrow band processes: high Q AR
models and close sinusoid pairs.

Before entering in such applications, let us briefly illustrate the
extension of linear prediction with long distance terms. We refer

here to the simplest case of one long distance term.
2. EXTENDED LINEAR PREDICTION FORMULATION

The standard one-step ahead linear prediction (LP) model is
described by the equation:

ﬁ(n):—iaix(n——i) )

i=1

where the prediction error is defined as:

e(n) = x(n)+gaix(n—i) 2

Let us consider an Extended Linear Prediction (ELP) model,
with a long term (LT) contribution:

L
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eLT(n) = x(n)+iaix(n—i)+a”x(n—k) @

The simplest way to compute the LP model is to form a
covariance matrix with standard covariance estimators:
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where x(n) is the input sequence of lenght N.
Likewise, an ELP model can be computed with the system:
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and the computation of L more autocorrelation estimates. The

resulting AR spectrum estimate of the LP parametrs computed
by (6) is:
1 :
AR () =
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Let us observe that in the above formulation the long term
prediction term is directly inserted into an overall minimum
MSE scheme. Instead, in the speech coding schemes, the long
term prediction operation is cascaded with a conventional LP
filter, i.e. the prediction model is formulated as follows:

eL"r(n) = e(n) "aLTe(n_ k)

§ ®
e(n) = x(n) +Zaix(n - k)

i=l
In this case the overall estimate is suboptimal, but it implies the
solution of separate systems of normal equations.
In both cases, we need a criterion for choosing the distance k of
the long term prediction.
Following the criterion of minimising the overall prediction
error energy, we should select the lag k for which:

E{]em(n)r} =d(0,0) +ZL:ai<I)(0,i)+aLT<D(O,k) 9)
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is minimum.
This would require in principle an exhaustive search for k. In
[4] a suboptimum procedure for eliminating one equation at
time from a whole set of normal equation is proposed.
Since we refer to a single long term coefficient, we adopt here
the same criterion employed in the speech coding applications.
In other words, we determine k as the lag at which a relative
autocorrelation maximum indicates the basic periodicity of the
signals.
This means that we lean on the high predictability of the
waveforms from one period to the next in order to lower the
prediction error.
The AR ELP based model posses k poles. Since by hypothesis
we are dealing with near periodic signals, we search for the
poles closest to the unit circle. Thus, the only information we
need in general, is the number of poles to be retained, which is
an a priori assumption. Other criteria could be the requirement
that poles lie in a given frequency interval, or a selection by
means coarse (LP) estimates. In the following we adopt the
highest Q criterion.
Let us illustrate such a procedure through the following
examples.

3. NARROW BAND PROCESSES

Narrow band process are characterised by near periodic signals
( and autocorrelation function ).



The high predictability of such processes at a distance nearly
corresponding to the inverse of the centroid frequency allows to
formulate good predictive spectral estimates using long term
prediction.

Let us consider a stationary discrete time AR(2) process In
absence of noise, a value, of L. equal to 3 in (5) is sufficient to
accomplish a good estimate of this AR spectrum, provided that
reliable acf estimates are available. This is no longer true if the
AR signal is corrupted by additive noise. This is shown in fig.1
where the AR estimate in presence of white noise with different
values of SNR is displayed for a 200 samples input sequeince
obtained by an AR(2) source with poles located in:

Z|,z = 0.995'eﬁ; .

In fig. 2 the result of the long term prediction using the (6) is
shown. In this case, the order of the model is raised up to 18
corresponding to the peak of the estimated autocorrelation.
Elimination of the unwanted peaks is done by retaining only the
pair of complex conjugate poles of the extended AR madel
closest to the unit circle. The result is shown in fig. 3.

Let us verify how the ELP technique applies to voice spectrum
analysis. In fig. 4 the short term AR(10) spectrum of a female
vowel is displayed ( fundamental frequency and formants are
indicated with bold lines ), while the spectrum of fig. § is
obtained with the long term prediction ( with k = 55), and
selecting the eight poles closest to the unit circle.
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Figure 1, AR(2) spectral estimates for various SNR values
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Figure 2, ELP spectral estimates for various SNR values
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Figure 3, ELP spectral after poles cancellation
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Fig. 4, AR(10) spectrum of a female "&" vowel
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Fig. 5, ELP spectrum of a female "&" vowel

4. CLOSE HARMONICS

Let us now consider the following model:
x(n) = A, cos(2nfn+¢,) +A, cos(2nf,n+ 0,)+ w(n) (10)
where ¢, and ¢, are independent, uniformly distributed phases

and w(n) is an additive white noise of variance c?. The

harmonics are "close" as their frequency difference may only be
discriminated by the standard AR(4) model at very high SNR
values as shown in fig. 6 (we have assumed in this case that
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Figure 6, AR(4) spectral estimation for different SNR values

11n/30 n/2

To overcome the problem of resolution loss with decreasing
SNR, we may extend the model order and remove the noise
eigenspace as suggested by Tuft and Kumaresan in [1] and
shown in fig. 7. In this figure, a 60 order AR system projected
on a four dimension space is employed.
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Figure 7, Tufts and Kumaresan estimation

A quite good practical result can be achieved with the much
computationally cheaper ELP technique ( running 63 times
faster on the Mathematica platform on the avarage ) .

In fig 8, the ELP spectrum ( with the correctly estimated LT
value 60 ) is plotted showing a good resolution capability. In
fig. 9 only the contributions of the poles closest to the unit circle
have been displayed.

CONCLUSION

High resolution estimates of near periodic signals can be
conducted with AR techniques using one more long term
prediction contribution as in the "interferometric” measures. The
application of this "hopped" LP order extension is that it
improves the resolution of spectral estimates at moderate extra
cost.

The resolution gain of this method is counterbalanced by its
inherent ambiguity, which can be resolved using the a priori
information (order of the system ).

Further investigation is being made on the use of multiple long
term contributions and on the application to eigenanalysis based
spectrum analysis techniques (MUSIC).
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Figure 8, ELP estimation for various SNR values
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