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En tomographie océanique on utilise des
moyens acoustiques pour estimer les paramétres
caractéristiques du milieu sous-marin, comme le
profil de température et les vitesses des courants.
Ces techniques sont basées sur la dépendance en-
tre les transformations subies par le signal acous-
tique pendant la propagation dans le milieu et
les paramétres qui doivent étre estimés. Un
des problémes en tomographie acoustique est de
défnir le systéme de mesure (taille, geométrie et
position des antennes, forme du signal, etc.) de
fagon & ce qu’il identifie les paramétres voulus
avec une précision donnée (biais et variance).
Dans cet exposé, on étudie ce probléme en util-
isant un outil d’analyse global mis au point orig-
inellement pour ’analyse des performances en lo-
calisation de sources.

1 Introduction

Ocean tomography uses acoustic signals-to infer parame-
ters of the underwater channel such as the sound velocity
profile (SVP), temperature field distributions, or current
velocities. These physical parameters are usually assumed
known in other applications of underwater acoustics, as in
sonar systems, for instance, for localization and tracking of
targets. Modern developments in source localization cou-
ple to the signal processing algorithms complex propaga-
tion models. The accuracy of these techniques depends on
the refinement of the propagation model and on the degree
to which the physical parameters are precisely measured.
Ocean tomography solves a problem which in a sense is the
inverse of the localization problem. Its goal is to determine
the physical parameters assuming known the relative po-
sition between the source/ receiver pairs. Due to several
effects like for example ocean currents or errors in instala-
tion, this position cannot be known precisely. For the sake
of being concrete, we carry out the analysis of tomographic
systems assuming in this paper that, besides measurement
noises, the uncertainty in the tomography system relates to
the errors in source position.

In ocean tomography acoustical means are
used to infer characteristic parameters of the un-
derwater medium such as temperature profile and
current velocity. These techniques are based on
the functional dependency between the transfor-
mation suffered by acoustical signals when trav-
eling in the ocean and the parameters that must
be estimated. One of the problems in acoustic
tomography is to design the measuring system
(size, geometry, and location of the antennas, sig-
nal shape, etc.) such that it will identify the de-
sired parameters within a given accuracy (biases
and variance). In this paper, we study this issue,
using a global analysis tool originally designed for
performance analysis of source location problems.

Several different approaches can be used to deal with this
‘type of uncertainty: 1) Use of a nominal known value for the
position parameter, i.e., to assume perfect knowledge of the
position; 2) Admit that the position parameter has a known
statistical distribution. This has the effect of blurring the
description of the observed data; 3) Try to improve the
description of the model, i.e, to attempt to estimate jointly
the ocean parameters of interest and the model parameters.

Each of these three approaches has a distinct impact on
the overall performance of the system and corresponds to
receivers of distinct complexity: both the quality and the
complexity of the estimates increases, in general, from 1) to
3). The relative payoffs depend on the actual role played by
the imprecisely known parameter, i.e., on the sensitivity of
the model to this parameter, on the amount of 4 priori un-
certainty, and on the degree to which the unknown position
and the tomographic parameters are jointly observable.

The paper presents a tool devoted to the analysis of the
performance of ocean tomography systems by applying to
this study a generalization of the ambiguity function intro-
duced in [3] for localization systems. The ambiguity func-
tion is a global analysis tool that accounts for large errors
rather than the local errors taken into consideration by the
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Figure 1: Inverse problems in underwater signal processing.

Cramér-Rao bounds. Based on the information provided
by the geometric properties of the probabilistic manifold
that describes the observed data, this function describes the
statistical observability of the parameters being estimated,
incorporating in an integrated manner the invertibility of
the transmission operator, the effect of the noise, and the
impact of uncertainties. As we will see, the ambiguity in-
dex introduced in [3] is defined directly in terms of the
Kullback directed divergence between the conditional dis-
tributions associated with a parametrized family modeling
the observed data and can thus be directly applied to many
estimation problems, in particular to ocean tomography.
In the next section we formulate the problem. Then, we
introduce the ambiguity function. In the last section, using
a very simple case study, we demonstrate the application of
the ambiguity function to the analysis of ocean tomography.

2 Problem Formulation

As brifely discussed in the Introduction, ocean tomogra-
phy and sonar localization share a very important charac-
teristic, namely they utilize the same probabilistic model
to describe the observed data, only its parametrization is
different. The diagram of Figure 1 illustrates this point. In
the diagram, s(¢) denotes a vector of source signals which
corresponds to multiple sources in source location problems
or to several emitters in tomography; r(t) is the signal ob-
served by an array of sensors; E and R are the parameters
describing the geometry and location of the emitting and
receiving antennas, respectively; 8 describes the physical
medium parameters; and H (4, E, R) is the matrix transmis-
sion operator that combines the directional characteristics
of the emitters and of the receivers with the propagation ef-
fects of the channel. The transmission operator H(6, E, R)
is parametrized by the emitter and the receivers’ location
parameters E' and R, respectively, as well as by the channel
physical parameters. With ocean tomography, we are in-
terested in estimating § assuming that £ and R are known.
With localization problems, it is 6 and either £ or R that
are assumed to be known while it is R or E that are to be
estimated. It is in this sense that tomography and local-
ization are said to be inverse problems.

As mentioned above, we carry out the global analysis by
applying the definition of ambiguity function as in [3]. To

demonstrate the validity of the approach, the paper con-
siders the simple case of an horizontally stratified medium,
with perfectly flat boundaries. The ocean is divided in
two horizontal layers where the velocity gradient is con-
stant: in the upper layer, sound speed decreases linearly
with depth, in the lower layer there is a positive constant
gradient (ducted propagation). This simple bilinear model
has the advantage of preserving a certain degree of analyt-
icity, exibiting, at the same time, the multipath propaga-
tion which is commonly present in vast ocean areas, with a
number of distinct rays between any two given points be-
ing present. In [3], we studied the performance of location
systems using this tool, showing the potential advantage of
explicitly modeling the temporal (inter-path) delay struc-
ture of the observations.

We assume that the bottom depth, the sound speed

at the surface, and the gradient of the sound speed pro-

file (SVP) at the lower layer are known and that it is the
duct’s depth and the gradient in the upper layer that are to
be estimated. We consider that the emitting and receiving
antennas are fixed (i,e,, their position do not change with
time). The emitter is a point source radiating a wideband
pseudo-random signal with known power density, and that
the receiving antenna consists of several sensors arranged
in a uniformiy spaced vertical linear array.

For this simple scenario, the following studies are pur-
sued:

Observability study: is it possible to identify the actual
values of the physical parameters (e.g., upper layer SVP
gradient and duct’s depth).

Incorrect prior knowledge: This is a sensitivity issue.
How does erroneous information regarding position param-
eters affect the ambiguity structure associated with the
physical parameters.

These studies are designed to illustrate the relevance of
the global analysis tool in [3] in analyzing the expected
performance of a tomography system. In particular, how
it may be used to assess the impact that wrong modeling
assumptions have in the ability of the tomographic system
in estimating the physical parameters of interest.

3 Ambiguity Function

Consider a family G, of density functions, indexed by a
parameter o € A:

Go 2 {p(z]a), a€A)}.

The Kullback-Leibler number (also called Kullback di-
rected divergence or cross-entropy) between two members
of G, is [1]:

Iay, o) 2 B, {m iﬁﬂiﬁ} .

In this equation, E,, is expectation with respect to the
probability density function p(z|a;). This functional was



introduced by Kullback [1] in the framework of information
theory. Although it has some distance-like properties, it is
not, in fact, a distance. As it can be easily seen, it is not
symmetric and it does not satisfy, in general, the triangular
inequality. However, I{a;, a3) > 0, with equality iff o; =
as. Note that
I(a1, a2) = Eq, {Inp(z]o) ~ Inp(z]az)},

ie., I(-,-) is the mean value of the difference between the
values of the log-likelihood function for two points in the
parameter space, for observations z, conditioned on one of
those points. The value of I(-, -) depends, naturally, on the
size of the observation interval. Here, we consider only the
asymptotic case of very long observation interval.

Heuristically, I{(a1, a3) is a measure of the resemblance,
or proximity, of the two models described by p(z|a;) and
p(z|az). The values of as that yield small values of
I(a, a3) indicate possible erroneous estimates of o when
the true value of the parameter is a;.

Based on these arguments, ambiguity between two points
(a1, ar2) 1n the parameter space is defined as

a Iyax(ay) = I(ay,a3)
Aler, ) = Ingax(aq)

(1)

where Iprax(o1) denotes an upper bound on the value
of I{aj,a3) over ay € A. Since I(-,-) is not symmetric,
A(a1,a3) is not, in general, a symmetric function of its
two arguments.

Consider that the observations’ power spectrum is de-
scribed by

Ro(w) = S(w)hg(w)he(w)T + o?(w)Ix

where we assume that the observation noise is spatially in-
coherent, with known power density o?(w). In the previous
equation, S(w) is the unknown source spectral density and
hs(w) is the resultant vector, that describes the coherent
combination of the steering vectors corresponding to the P
replicas received, see [2, 3] for further details.

The resultant vector can be decomposed as

he(w) = D(8)b(9)

where the K x P matrix D(8) describes the spatial struc-
ture of the individual replicas, depending only on the inter-
sensor delays for each received path, and b(8) is a P dimen-
sional vector that depends only on their temporal align-
ment. :

Using the relation

Re(w)™! =

1 S(w)
75 (1~ B’

where the scalar Ey(w) is defined by

Eg(w) = 0*(w) + S@)lihs ()|,

leads to

10:0) = 3 [ [5 e - 2 pmaor

o3(w)

S(w)?
- Wihao(w)Hho(w)lz

;”0(8)] Ao

+ In

Ambiguity is computed using this equation in the general
definition given before, see [4] for a complete discussion.

4 Case Studies

We present in this section ambiguity plots for the estima-
tion of suface layer velocity gradient and duct depth in a
deep ocean area, considering a bilinear approximation to a
velocity profile typical of the North Atlantic with the fol-
lowing nominal values: gradient above duct (go): -0.0035
s~1, gradient below duct (g1): .013 s=1, duct depht: 950
m, and sound speed at the surface: 1500 m~—!

In all scenarios studied, the receiving antenna is a uni-
form vertical linear array, with inter-element spacing de-
scribed by the parameter d, the number of sensors K, and
the depth yp of the top-most element. The source signal has
a flat spectrum in the bandwidth of the receiving system,
and the signal to noise (Gaussian, white) ratio is described
by the parameter SNR (ratio between the power density of
the signal at the source to the noise density at the receiver).

The first two plots show the ambiguity surfaces in the
ideal case, where perfect knowledge of all the modeling pa-
rameters is asumed, except of those being estimated. They
illustrate the impact of the antenna placement on the abil-
ity to estimate the desired parameters. In both case, but in
particular when the antenna is placed at 100 meters (Fig.
2), where the main lobe is clearly defined, the ambiguity
surfaces reveal a strong correlation between duct depth and
upper layer gradient. Comparing plots 2 and 3, wee see that
important secondary lobes are formed when the antenna is
located well inside the Sofar channel, but that the width of
the main lobe is wider for the antenna at 100 meters. This
kind of trade-off between local and global properties is well
known in active sonar systems, and demonstrates that the
role of the radiated signals in those systems is here also
played by source/antenna placements.

The second group of plots, Fig. 4 through Fig. 6 show
the sensitivity of the tomography systems to uncertainty
on the parameters that are treated as being known (source
position, ocean bottom, deep layer gradient). Comparing
these plots to the corresponding ideal one Fig. 3, we see
that utilization of nominal erroneous parameter values re-
sults in the introduction of biases (the ambiguity curves no
longer peak at the right values) and/or lead to deformation
of the original structure.

Fig. 4 shows that an error of 10 meters in source immer-
sion has a drastic effect on the ability to estimate the two
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Figure 3: Antenna immersion 610 m.

parameters of interest, leading to a complete breakdown of
the structure of the surface.

In Fig. 5 we see that an error of 50 meters on bottom
depth has no significant influence on system’s performance.

The last figure (6) corresponds to a mismatch in the ve-
locity gradient on the lower layer. In this case, the structure
1s roughly preserved, but a large bias in both upper layer
gradient and duct depth appears.
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