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RESUME

Ce document décrit une nouvelle application du Hough
Transform, et la possibilité du mettage en oeuvre de ceci
pour la détection des changements de fréquence dans les
roulements de tambour. Les résultats des expériences sont
présentés pour des données synthétiques aussi bien que
réelles, et on peut ainsi voir que jusqu'a 40% des
trajectoires peuvent étre identifiées avec une grande
précision.

1. INTRODUCTION

This paper continues previous work, which described a
method and implementation for the extraction of resonant
frequencies (formants) from high order autoregressive (AR)
models.[!}  The algorithm itself was developed for the
particular purpose of finding these formants in the acoustic
waveforms of percussion instruments (drums).

The basic AR model is very similar to that used in speech
analysis, although there are some significant differences
between the two types of waveform, requiring different
applications of Linear Predictive Coding (LPC) theory.
First, only a single explosive input is required to re-
synthesise each drum beat, as opposed to a train of pulses,
or continuous noise in speech. Also, many more formants
are needed for a high quality rendition of the synthesised
waveform, and these formants change frequency slowly
over time with controlled variation.

The procedure finds the factors of a polynomial using
signal processing techniques, rather than numerical
methods, as the latter become unreliable for high order
models. First estimates for formant positions are made by
applying well known Fourier Transform derived measures
to an LPC model of a drum beat(23], then the magnitude
surface of the z transform in a region around these
estimates in the unit circle is evaluated to define precise
positions. Previous work has shown well over 90% of
possible formants can be located with reasonable accuracy.
As in LPC speech analysis, the original time signal must be
analysed in short segments typically 30ms long. This
provides a piece-wise linear model of a non-linear system.
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Unfortunately when very short time windows are used,
together with high order models, large amounts of data are
produced. It is therefore useful to find a way of describing
these variations in frequency over time with a continuous
function, rather than the piece-wise model. Traditional
methods used for speech signals are easily able to track the
movements of formant positions as there are only ever 4 or
5 frequencies to deal with. Several algorithms have been
shown to successfully extract individual trajectories by
assuming frequencies in any time frame to be near where
they were in the previous framel®®], The time/frequency
plot acquired from a 200th order drum model in Fig. 1
suggests that identifying tracks in such dense data requires
a more complex approach. Furthermore, the tracking
algorithm must be able to deal with not just noisy, but
missing data, as the extraction method may only find 80 -
90% of formants. This is basically a pattern recognition
problem, and in image processing a standard solution is the
Hough Transform.

2. HOUGH TRANSFORM

The Hough TransformlS] (HT) is now widely established as
a simple technique for detecting complex patterns of points
in binary images. This is achieved by determining values
of parameters which are specific to these patterns. The
most common use of the HT is to detect straight lines in an
image, and this approach best illustrates the main concepts.
Consider detecting a set of image points (x,y) which lie on
a straight line. They may be defined by a function, f :

FRVIVI)



1356

A(m.)xy) =y—m.x=c=0 M

where m and ¢ are the two parameters, the gradient and
intercept, which fully describe the line. Equation (1) gives,
for any image point, a set of all the parameter combinations
(m,c) which are valid for that point. i.e. all the straight
lines which pass through (x,y). Thus, the mapping is one
to many from the image space to the parameter space. This
mapping is repeated for every (x,y) position, producing a
parameter, or accumulator space for the whole image,
where 'votes' for particular lines are logged. Points which
lic on a common line will intersect at a common point in the
parameter space, and the co-ordinates of the parameter
point characterise the line connecting the image points. The
determination of this intersection then becomes a simple
local peak detection problem, rather than a complex global
detection problem in the image space.

3. ALGORITHM

For the purposes of this application several significant
modifications have been made to the standard HT described
above. Firstly, the use of an 'image’ is not obvious, in fact
the x and y co-ordinates are actually time and frequency, to
denote the changing formant frequencies. Secondly, in
image processing problems, the HT normally uses a
coarsely quantised image space (e.g. 256 x 256 pixels), and
a parameter space of a comparable size. This
automatically limits the number of possible lines that can
pass though any one point. For our purposes the time co-
ordinates are quantised to the length of the time windows
used (e.g. 30ms). However, this is not true of the formant
frequencies, which are to double floating point precision.
The number of possible lines passing through any
frequency is therefore far too large to apply standard
techniques due to computational and accuracy constraints.
To overcome this, a method has been devised where each
formant in turn is paired with every other formant
frequency in subsequent time frames. This approach is
actually a variation of the Combinatorial Hough
Transforml7), which has been successfully used to improve
performance in the presence of noise and decrease

computation time. For each formant pair, (k,.Ax,y;) and
(k,.Ax,y;), where k, is the position and Ax the length of
each time frame, and y, the frequency, the values of m and

¢ for the straight line connecting the two points can be
found by solving :

_ (m-w)
(- k)Ax @
c=y, —(m.k.Ax) (3)

The resulting floating point values of m and ¢ are then
quantised into the parameter space, which is of a typical
size (e.g. 256 x 256 bins). This particular parameterisation
is not preferred in image processing applications as the
value of m can range from -eo to eo. However, formants
are only paired with values in successive time frames, so
vertical lines are never encountered, and the slow moving
frequencies will not produce large rates of change.
Although the procedures described above refer to detecting
straight lines, experimental measurements and other works
have shown that the change in fundamental frequency of a
drum beat is not linear, but of an exponential form{®). To
model this correctly the formant frequencies are simply
analysed on a log scale, while time is left linear. The
values of m and ¢ then become octaves/second and
log(radians) respectively.

Once the paramcter space has been fully determined, the
local maxima must be detected. Here, a threshold value
may be used to ensure that only very common candidates
are chosen. The choice of threshold can be critical as too
low a value will mean 'noisy' peaks are identified as lines,
and too high a value will lead to some real lines remaining
undetected. A statistical measure for automatic selection of
the threshold has been developed to counter variations in
test data. The mean, [, and standard deviation, O, of the
votes in the parameter space are calculated, and a threshold
of p+20 has been found suitable through empirical
methods. This value is then used in a simple nearest
neighbour peak detection routine, where each parameter
space bin is compared with surrounding bins to detect local
maxima. The selected formant tracks may then be recorded
as a starting frequency and the rate of change of frequency.

4. IMPLEMENTATION

The algorithm has been implemented in the C programming:
language on a personal computer equipped with a floating
point math co-processor. Graphics have be incorporated
into the program to give plots of the original formant data,
the accumulator space, the pdf of the accumulator space
and the selected formant tracks. The graphics were mainly
introduced for algorithmic debugging purposes, and may be
disabled.

The main program options include the dimensions of the
parameter space, a choice between log and linear frequency
scales, threshold value (or automatic selection), and a
choice between a 3x3 or 5x5 search grid for local maxima.
The program also has the capability to restrict the
parameters m and c to user-defined ranges, so lines outside
these limits are ignored. Values of ¢ should be restricted to
0 and 7 radians as a starting frequency must lie in that
interval. Similarly, the 'gradient’, m, can be limited to +ve
or -ve slopes and ranges within those depending upon the
input data. The parameter space will only contain bins for




parameter values in the specified limits, which can increase
resolution.

5. EXPERIMENTS AND RESULTS

Two classes of experiments were performed, one using
synthetic formant data, and one on data obtained from real
sound sources.

Synthetic Data
The synthetic tests were used to assess the algorithm's

accuracy in locating formant tracks, as its results can be
compared to those used to generate the test data. A
program was specially written to generate these
trajectories. The user provides a starting frequency and a
rate of change of frequency, and the formant data for the
specified number of time frames is then easily calculated.
Other options include a random number generator to select
the parameters of tracks, with limits being imposed on both
the starting frequency and gradient. Also 'noise' may be
added by including a number of random formant positions
m each time frame.

Four types of synthetic data were generated; a single track,
a single track in 99% noise, 60 tracks, and 60 tracks in
40% noise. Table 1 shows the averages of results obtained
from ten experiments on each data type. The limits on the
values of m were varied between 0 to —0.1w/s and 0 to
—0.5w/s in steps of 0.1m/ s, while c was restricted to 0
and m. A 100x100 and a 200x200 bin parameter space
was used.

The algorithm's accuracy was deemed more than adequate
for synthetic models, so experiments were initiated using
real data.

Real Data

Before analysing data obtained from a drum beat, a sound
source with an audible change in frequency was used. A
recording of a 'swanee whistle' was made on a high quality
DAT recorder. This was transferred to the personal
computer, and an LPC model (order 100) was generated
using the autocorrelation method. Formant extraction then
took place with, on average, 80% of the possible
resonances being identified. Simple spectral analysis had
shown the fundamental frequency of the whistle to vary
from 1.313kHz to 2.156kHz in an non-linear manner over a
period of 700ms. The formant data was then analysed
using limits of 0 < ¢ < w and 0 < m < +1.0 octave/sec to
account for the approximate doubling in frequency. A
200x200 bin parameter space was used, with the previously
described automatic threshold value for peak identification.
The algorithm detected 12 unique formant trajectories,
including the fundamental with an average error of 0.124%
over the duration of the sound.
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A recording of a 'tom-tom' was also made and transferred
to the personal computer. Two 200th order LPC models
were generated using the autocorrelation and covariance
methods, and formant extraction found, on average, 80% of
possible resonances. Experiments were carried out with
varying ranges of m. The results in Table 2 show that up
to 40% of the formant trajectories can be identified
uniquely from the data. Fig 2 is an example of just three
calculated trajectories from the data in Fig. 1, together with
the formant positions closest to them. All other data has
been removed and the frequency scale enlarged for clarity.

6. CONCLUSIONS

A new application of the Hough Transform for pattern
recognition has been described. Evidence of both the
algorithm's accuracy and ability to detect patterns in real
and synthetic data has been presented. The algorithm has
been shown to identify formant trajectories of both a linear
and exponential type. Future work will include detection of
trajectory end points and the synthesis of sounds for
perceptual analysis. Also, the results of this analysis may
be used as a first approximation in an improved formant
extraction technique in order to identify values that had
been previously undetected.
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No. lines found min % error max % error av. % error
1 track 1 0.132 0.981 0.423
1 track (99% noise) 1 0.221 1.513 0.762
60 tracks 51 0.147 1.883 0.621
60 tracks (40%noise) 57 0.213 2.172 0.789
Table 1. Results of synthetic data tests.
Autocorrelation model Covariance model
Gradient range
(octaves/sec) No. lines found average % error No. lines found average % error
-0.05t0 0 34 0.126 32 0.131
-0.1t00 27 0.130 28 0.134
-0.15t00 23 0.151 25 0.140
-02t00 23 0.158 24 0.149
-0.25t00 23 0.162 25 0.153
-0.1t0-0.05 32 0.131 29 0.128
- 0.15 t0 -0.05 27 0.143 26 0.136
-0.2 to -0.05 23 0.149 22 0.136
-0.25 to -0.05 25 0.152 24 0.128
-0.15t0-0.1 26 0.128 25 0.135
-0.2t0-0.1 25 0.136 25 0.137
-025t0-0.1 23 0.155 24 0.141
-02t0-0.15 25 0.120 23 0.151
-0.25t0-0.15 25 0.137 22 0.139
-0.251t0-0.2 25 0.134 23 0.140
Table 2. Results of real drum tests
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Fig 1. Raw formant data from a 200th order model of a

single drum beat modelled with 42ms time frames.
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Fig 2. Three formant trajectories with original data.




