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RESUME

Dans I’analyse des maladies encéphaliques le monitorage avec
I’électro-encéphalogramme de longue dureé est devenue tres
important. Ce monitorage demande une grande capacitée de
memorization. Dans cette presentation est faite une comparaison
parmi des méthodes de compression du signal EEG sans perte
d’information. Tous les méthodes présentés sont fondés sur le
DPCM, la vrai.comparaison est pourtant faite entre differentes

predicteurs sois classiques que neurales.
1. INTRODUCTION

Clinical data record is one of the most important problems of

medical archiving, particularly in electroencephalography
(EEG). Just a few years ago, the accumulation of EEG data
required a large amount of paper, that was easily deteriorable.
An alternative to paper records was digital storage on magnetic
media. Moreover this new type of medium permits to maintain
the data un-altered in the long time. With computerized EEG
evaluation, the problem of a large amount of digited EEG data
storage is reproposed. It becomes necessary to reduce the data-

rate produced by a - PCM coder by means of suitable

compression techniques. The solution proposed in this paper are

based on a differential coding scheme: this choice permits to
satisfy the lossless constraint imposed by neurophisiologists. The
system for lossless EEG data compression is composed by a
predictor and a quantizer. The predictor provides an estimate of
the actual samples of the EEG signal by means of a suitable
combination of the previous samples. The quantizer is chosen in
a way to obtain a lossless compression technique. The new
source of data to be stored is composed by the quantized
prediction error signal samples (whose variance is less than that
of the original signal) that are codified with an entropy coding
scheme. In this way, both the types of redundancy present in
EEG signal are removed. Differential pulse code modulation is
in fact used to remove the redundancy due to the temporal
correlation of the signal, and the entropy coder removes the
second type of redundancy due to a un-uniform probability
distribution of the signal. In this paper a predictor based on
Artificial Neural Network (ANN) is also proposed; by means of
a sui\ta'ble training, the weights of the network are determined
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once for all; a fixed nonlinear predictor is thus obtained, that
shows performance comparable to that of the adaptive

predictors.
2. EEG SIGNAL

EEG is a graphical representation of the brain electrical activity,
it can be detected by means of electrodes placed over the human
scalp. Studies have shown that the scalp EEG derives from
graded synaptic potentials generated by cells in the cerebral
cortex, named neurons. Such electrical activity presents a sort
of synchronization, pointed out by some correllation in the
waveform recorded by EEG analysis. The EEG potential
normally varies from 10 to 200 xV but may rise to 1 mV during
epileptic seizures. Its energy is mainly concentrated in the band
to 30 Hz.
quasistationary, i.e., can be treated as stationary waveforms

from O Furthemore, EEG waveforms are
over a period of less than ten seconds. EEG is very important
because permits to detect any pathological process of the central
nervous system. It makes expecially easy the diagnosis of

encephalic tumour and epilepsy.
3. LINEAR PREDICTOR

The signal estimate can be obtained by means of a fixed
predictor, whose coefficients are calculated once for all applying
the Yule-Walker algorithm [1] over a stationary tract of the
signal. This procedure permits to identify the AR model
parameters in order to describe the EEG signal. As the EEG
signal is quasistationary (it can be considered stationary over a

period of less than ten seconds), the fixed predictor provide
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good results only over intervals that are statistically similar to
that one employed for the Yule-Walker algorithm. The
predictors used in our experiments have order O and 5.
Obviously, the best results are provided by the predictor having
higher order (its prediction error have the smallest variance).
The worst estimate is obtained on the epileptic spikes. Better
performance is obtained by means of adaptive predictors; in this
case coefficients are modified in a way to follow the fast
variations in the signal statistic. The adaptive predictors
implemented are based on the LMS algorithm and are usually
employed in speech coding. A second-order predictor is updated
with the Transversal/Signal-Driven (TS) [2] algorithm. The
coefficients are updated as
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where g,%(n) is an unbiased estimate of the reconstructed signal
power. It is obtained by low pass filtering the istantaneous
square value of the signal (the more A approaches to i the more
increases the attenuation of rapid variations). This type of
filtering produces usually great benefits on the algorithm
convergence. Parameter p is the step size of the updates. The
restrictions to a second-order predictor is due to easily grant the
stability of the reconstruction filter. To ensure this stability of
the coefficients are constrained to lie in the region
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where € is a small number constant used to prevent the
coefficients from reaching the stable/unstable boundary. To
determine the adaptivity parameters, a procedure "try and
repeat” has been employed. After this optimization procedure,
the following parameters were chosen:

® = 0.01;
e )\ =0.5;
®¢=0.1.

A suitable model for the EEG signal (in a stationary tract) is an
AR model of order 7: a predictor of order 2 can not then
provide an satisfactory estimate; the corresponding prediction
error signal has not a negligible correlation.

In a variant of the previous algorithm, a certain number of the

previous prediction error samples also contribute to prediction:
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This solution permits to exploit the residual correlation present

in the prediction error signal. Updating for a,(n) is the same as
in equation (1) and for b,(n) occur according to
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The same stability constraint is imposed to a,(#n); no check is
needed for b,(n). The parameters are:

® ;= 0.011; p, = 0.01;

® X =099 ), =0.99;

i=1,2
(6)
b(n + 1) = b(n) + u,sign{é }sign{é, ;}
i=1,2,..,6
where:
® 4, = 0.004; p, = 0.004;
®¢=0.1.

An alternative to the previous algorithms is the
Transversal/Residual-Driven (TR): to update the transversal
coefficients only autocorrelations of the quantized residual are
used. Coeffients updates for a second-order AR filter can be
approximated by updates of an equivalent higher order MA
filter. The resulting updates are:
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After optimization the parameters are set to:
® u = 0.0625;
e )\ =009
®c=0.1.



4. NEURAL PREDICTOR

Another proposal made in this paper is the use of a predictor
based on an Artificial Neural Network (ANN). The ANN
employed is the well-known back-propagation network [3]. Its
advantages is the facility of use and the speed in convergence.
To train the ANN characteristic segments or graphoelements of
the EEG signal were considered (epileptic spikes, artifacts,
alpha rhythms, etc.). The ANN used is a feedforward network
with a suitable number of inputs, one hidden layer and one
output. The experiments have shown that a network with more
than one hidden layer do not improve the performance of the
associated predictor. The number of inputs selected is a tradeoff
between simplicity of the network and suitable description of the
signal. The squashing function is the hyperbolic tangent. The
addition of a trained bias to the hidden layer produced a
predictor with good performance. The ANN weights are trained
once for all. If the training is mainly focused over epileptic
spikes, the resulting predictor performs better than other neural
predictors obtained by means of a generalized training and than
the previously described adaptive predictors on spikes, but
worse on other graphoelements. It has been observed that such
predictors give a lower estimate of the signal in correspondence
of spikes. Such behavior has an opposite effect in other
situations with waveforms that are easily to predict but
characterized by a large value of the amplitude (for example an
alpha rhythm). An other strategy is to generalize the training
presenting to the network all the different graphoelements. The
resulting predictor have so good performance on all the signal.

5. QUANTIZATION AND CODING

The second important component in the predictive coding
scheme is the quantizer. By knowing the prediction error p.d.f.
(it was approximated by a gaussian), we could choose a
quantizer that match the signal statistics {4]. Doing so, the MSE
is minimized, but the reversibility of the
compression/decompression process is not granted. This
quantizer do not permit to control the peak error. In our
experiments the source data are integer numbers (already
uniformly quantized), while the prediction errors results to be
real numbers; in this case a uniform quantizer approximating
real number to the nearest integer, permits to perform a lossless
compression/decompression process. In fact, if Q indicates such

operation, results
Q(e(n)) = Qx(n)-%(n)) = x(n)-Q(E(n)) B

where x(n) is the integer input sample and X(n) its estimate. This
relation permits to pass to the equivalent coding scheme that is
lossless.

The new data source is composed by the quantized prediction
error samples having and approximately gaussian distribution.
An entropy coding scheme can be used to remove the
redundancy due to a nonuniform probability distribution.
Entropy coding is a source coding technique that assigns shorter
code words to highly probable symbols and longer code words
to less probable symbols. When the symbols are independent (in
our case the error samples are quite uncorrelated), it is possible
to generate codes having average word length approximately
equal to the entropy of the source. The procedure for generating
such a code is known as Huffman coding [5]. As the EEG signal
is quasistationary, the prediction error variance is time varying;
by monitoring the source entropy it is possible, when his
variations are greater than a prefixed value, to generate again
the code. On average, such an adaptive code is better than fixed
but needs many operations. Let us now describe the algoritm
employed; the original signal samples assume values from -128
to 127: so, it is reasonable to suppose that the quantized
prediction error signal samples assume values from -255 to 255.
In order to obtain a lossless compression/decompression
technique, an entropy coding composed by 511 codeword must
be used, with evident computation complexity. A better solution
is to consider only the symbols which are statistically
predominant, i.e., those that fall in the intervall (u-30,u+30),
where p is the mean value and o is the standard deviation. This
choice reduce the number of codeword to about 30 (being the
standard deviation on average equal to 5). Symbols that fall
outer that intervall are described by means of a unique
codeword, followed by the value of the original signal samples
(i.e. a byte). Experimental trial have shown that the
deterioration of performance due to this coding scheme with
respect to a pure Huffman scheme is very small. Entropy is
monitored every 128 samples.

6. RESULTS

The various algorithm were compared by using 18 traces of two
EEG recording sessions of 200 s each (the first is referring to
a normal person and presents the typical alpha rythm behavior,
the second is referring to a persons having epileptic seizures);
the signal was sampled 128 samples/s. A comparison is done
among the predictors according to the variance of the resulting

prediction error signal; the tested predictors are:

the simple zero order predictor (each sample is predicted as
equal to the previous one) (ZOP);

a 5 order fixed predictor (the coefficients are determined by the
Yule-Walker algorithm over an alpha trace) (ARS);

an adaptive tranversal signal driven algorithm with 2

poles (TS);
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an adaptive algorithm with 2 poles and 6 zeroes using the
gradient algorithm to update coefficients (ZG);

an adaptive algorithm with 2 poles and 6 zeroes using the simple
sign algorithm to update coefficients (ZS);

an adaptive tranversal residual driven algorithm with 2
poles (TS);

a neural network with 10 inputs and 5 hidden nodes trained over
a selection of alpha traces (N5A);

a neural network with 10 inputs and 5 hidden nodes trained over
a selection of epileptic traces (NSE);

a neural network with 10 inputs and 20 hidden nodes trained
over a selection of alpha traces (N20A);

a neural network with 10 inputs and 20 hidden nodes trained
over a selection of epileptic traces (N20E);

a neural network with 10 inputs and 20 hidden nodes trained

over a selection of alpha and epileptic traces (N20);

Table I
Predictor Variance
alpha epylectic
ZOP 23.6 20.8
ARS 14.7 14.8
TS 12.9 12.6
ZG 11.4 13.4
A 11.9 16.3
TR 13.0 12.2
N5SA 15.8 17.2
NSE 19.9 17.1
N20A 14.6 18.1
N20E 19.5 16.9
N20 11.8 13.4

In Table I for each of these ten predictors the variance of the
prediction error is given. The value in the table is the mean of
the variance obtained in each of the 18 traces, alpha and
epylectic rithms are distinguished. The best performance is
obtained by the adaptive predictors, expecially by the classical
transversal signal driven (TS). The neural network trained with
care over a suitable selection of graphoelements gives (NN20)
results which are very near to those of the adaptive predictors;
this is maybe due to its intrinsic generalization capabilities; the

advantage of the neural network predictors is that it can be

trained once for all and its coefficients don’t need to be updated
with additional computation.

By using the entropy coding scheme described in section 5 it is
possible to compress the EEG signal without loss of information
to about the 45%. By accepting a small peak error (say 1 or 2)
not perceivable with the usual EEG display systems even better
can be achieved (40% and 36%

compression  ratios

respectively).
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