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The Identification of Late Fields: A Multichannel
High-Resolution State Space Approach

Martin Haardt, Peter Weismiiller, and Reinmar Killmann

Abstract — This paper presents a new multichannel parémeter esti-
mation approach based on low rank approximations of noisy block
Hankel matrices. Different state space representations of the signals
reveal the algebraic structure of the underlying model, resultingin a
unified framework for dealing with uniformly spaced sensor arrays
and the harmonic retrieval problem. Ultimately, these insights lead
to improved parameter estimates. From the wide range of possi-
ble applications we will give a biomedical example: Late fields are
identified from multichannel biomagnetic measurements,

1. Introduction

Ventricular late potentials and ventricular late fields are low
amplitude, high frequency oscillations that might occur at the
end of and after the QRS complex of the heartbeat (Figure 1).
They are identified in electrocardiographic (ECG) and magne-
tocardiographic (MCG) recordings, respectively, and represent
slowed conduction in diseased myocardium, the muscular sub-
.stance of the heart. Thus, they indicate deficiencies of the heart
muscle, leading to an increased risk for developing ventricular
arrhythmias [2]. Existing identification methods are based on pe-
riodograms, heuristic averaging and filtering techniques [1], [2].
Therefore, they neither allow a spatial localization nor a study of
late fields in isolated heartbeats. This, however, can be achieved
by high-resolution spectral estimation schemes that work with
multichannel measurements of the heart activity.

The presented model-based approach assumes that all M
sensor channels observe the same frequencies, where the am-
plitude and phase of a particular harmonic component can vary
from channel to channel. State space representations expose the
structure of this classical harmonic retrieval problem showing

that exponentials can be generated by zero input oscillators in re- -

sponse to nom zero initial conditions [6]. Since finite data records
reveal only a poor approximation of covariance matrices, our
approach does not use any variance-covariance information (as
described in [4]), but works directly on the output of a given
sensor array (direct data approach).

It will be shown that this new multichannel state space ap-
proach does not only solve the harmonic retrieval problem, but
that it can also be used to estimate signal parameters, e.g., di-
rections of arrival (DOAs), in narrow-band array signal pro-
“cessing using a uniform linear (equispaced) sensor array (ULA).
Although the commonality between these data models is well
known, their analysis has most of the time been treated sepa-
rately. Therefore, a unified framework for the solution of these
problems will be given in the next section. Furthermore, the new
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concepts presented in this paper can easily be extended to the
time-varying case, as addressed in [5].

2. Data Model

The equivalence between the estimation of superimposed expo-
nentials from multichannel measurements and the signal param-
eter estimation problem using a ULA will be established in this
section.

2.1. Harmonic Retrieval

To this end, the harmonic retrieval problem is considered first: Let
an (arbitrary) array of M sensors receive the sum of p (possibly
damped) exponential signals. Then, y,,(n). 1 < m < M, the
uncorrupted signal at sensor m, is given by

P
ym(n):ch,m A% 0<n<N-1, (1)
k=1

where ¢i,m denotes the (complex) amplitude of the kth expo-
nential observed from the mth sensor and Ay = |Ax| e/¥*. After
combining the observations at all M sensors to a signal vector
y(n) = [n1(n), y2(n), ..., ys(n)]%, equation (1) can be ex-
pressed in a more compact form

y(n) = ¢T A™ o, (2)
where
€1 €1,2 ... Ci,M
€21 €22 ... CoMm
c=\ . s o (3)
cp,l Cp'z .o cP»M

A = diag(M, Az, ..., Ap). and o = [1,1,...,1]7, Throughout
this paper, the transpose of a vector or a matrix A will be written
AT | and its conjugate transpose A7 ie., A¥ = 4" .

2.2, Uniform Linear Array

If, on the other hand, p narrow-band, possibly coherent, plane
waves are incident on a ULA of N sensors, the mth snapshot is
described by the output vector

T _
z'(m) = . (4)
P P P
] i(N-1
ch,m,ch,me’”", ceny g ch,me’( Jun
k=1 k=1 k=1

where w, = (2wd/A)sinfg, d being the spacing between ad-
jacent sensors, A the associated carrier wavelength, and 8;, the
DOA of the kth incident signal. Let M subsequent snapshots
of the array output 2T (m), 1 < m < M, form the rows of an
M x N matrix Y. This matrix can be expressed as

Y =C7 [0, Ao,..., AV 1] (5)
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Notice, that the kth row of C contains M snapshots of the kth
signal (3), while the second matrix in (5), representing the ar-
ray characteristics, has a Vandermonde structure. Its p rows are
known as steering or direction vectors and depend on the corre-
sponding DOAs.

It is clearly seen from (2), that equation (5) also holds, if N
subsequent data vectors y(n),0 < n < (N — 1), taken from
the harmonic retrieval problem, form the columns of Y. Conse-
quently, both problems are equivalent, if

[Ae] =1 Yk, (6)

which is always satisfied in array processing applications with a
ULA (4). In the harmonic retrieval problem, however, equation
(6) obviously corresponds to the retrieval of undamped exponen-
tials.

3. Multichannel State Space Approach

To extend the direct data approach presented in [6] to the mul-

tidimensional case, two multichainel state space descripiions of

the harmonic oscillator are introduced.

Let x(n) denote the state vector of dimension p (minimal
system order). Then, the familiar traditional state space model
is defined as:

z(n+1) = F x(n)
yw) = H' a(n) "

Thus, we can express the current output vector y(n) in terms of

the state vector at time zerc ={0):
y(n) = H" F"x(0) (8)

It is well known that a linear system has an infinite num-
ber of realizations, each of them having its own state space
representation, characterized by the triple {F, HT, (0)}. All
realizations can be obtained from one another through simi-
larity transformattons i.e., by replacing {F, H”,x(0)} with
{SFS~', HT S, 52(0)} for different choices of invertible
p X p matrices S. One diagonal realization, for instance, is given
by {4,C7, o}.

The multlchannel harmonic oscillator can also be described
using the new extended state description, an alternative linear
representation with matrix valued states X (n) € C ?*M:;

X(n+1) = F X(n) ()
yT(n) = BT X(n)

Here, every sensor (harmonic retrieval) or snapshot (ULA) is
represented by one of the M columns of X (n) and equation (8)
has the following counterpart:

y"(n) = T F" X (0) (10)

Obviously, a particular realization is characterized by the triple
{F,h", X(0)}. It is clear that all possible realizations can be
obtamed from {A, o”, C} using similarity transformations.

Although both models are equivalent, it will be shown that
only the extended state description provides a possibility to fur-
ther improve the estimation accuracy if equation (6) is satisfied
(i.e., ULA or undamped exponentials). For notational conve-
nience, the proposed algorithms will only be described in terms
of the extended state description. Yet, it is fairly easy to apply
all results to the traditional state space representation, unless
otherwise indicated.

4. Estimation Procedure

4.1. Matrix Factorization
The presented algorithms are based on the factorization of block
Hankel matrices B, constructed from noise-corrupted array mea-
surements,

g(m) = y(m) +e, (11)

where the noise vector e has dimension M .
In the noiseless case, the uncorrupted block Hankel matrix is
defined as

¥y (0)  yT(1) ... YyT(N-L)
yT(1)  47(2) y'(N - L+1)
B = : : :
v(L-1) y7(L) vF (N — 1)

Using equation (10), it can be shown that B is rank-deficient,
since it can be factored into a product of an L x p extended
observability matrix @ and a p x M(N — L + 1) matrix &
containing consecutive state vectors:

B = o @ (12)
hT
hTF NeL
- : |X(0), FX(0),..., F¥~"X(0)]
th’—"L_l

4.2. Frequency or DOA Esiimation

In the presence of additive noise, the block Hankel matrix B has
full rank with probability one. To obtain an optimum low rank
approximation, the proposed algorithm starts by computing the
singular value decomposition (SVD) of the noisy block Hankel
matrix,

w3 L][H] e

where the diagonal matrix X', contains the p dominant singular
values. The number of signals p is assumed to be either known
or determinable via some information theoretical criten'a, such
as AIC of MDL [8]. After that, define @ = U, ¥}/* and
= X 1/2 VH Obviously, @ & is the best rank p approximation
of B in the Frobemus norm [3].

O deprived of its first and last row will be denoted by @1
and @|, respectively. In the noise-free case (12) we would have

O1= 0| F. (14)

With noisy measurements #(m), however, there is no p x p
feedback matrix F that exactly fulfills this overdetermined set
of equations. A good approximation ' can be found by solving
(14) via least squares or total least squares [3].

Afterwards, an eigendecomposition of the estimated feed-
back matrix is performed, i.e.,

F=5148, (15)

Note, that the the diagonal matrix A, containing the eigenvalues
of F, approximates A. Therefore, the frequency estimates and
damping factors (harmonic retrieval) or the DOAs (ULA) can be
determined from A.



4.3. Signal Reconstruction

In order to estimate the coefficient matrix C, notice also that
S is a similarity transformation converting an extended state
representation described by the triple {F', kT, X(0)} into the
diagonal realization {A, kT $§~%, SX(0)}. Motivated by these
observations and equation (12), let us define

A
. 63
Ost=| ] (16)
61
and )
S = [‘/”1; ¢2»---:¢N-L+1] . (17)

These block matrices are multiplied by negative powers of A in
the following fashion:

o7 B
67 A
. (18)

0% A7

"1 " e(N=L)

¢11 A ¢2: veey A ¢N—L+1] . (19)
To eliminate the noise as much as possible, the arithmetic mean
of the row vectors defined in equation (18) will be calculated. It
is denoted by

AT

b =[hi,hg,... hy).
Likewise, the arithmetic mean of the block matrices determined
by (19) will be called X (0). Then, the proposed estimate of C
can be determined in the following way:

C = diag(hy, ha, ..., hy) X(0). (20)

Due to the described block averaging technique, the resulting
amplitude and phase estimates (harmonic retrieval) or signal es-
timates (ULA) are less noisy and, therefore, more accurate than
those produced with the algorithm described in [6].

4.4. Estimation of Unitary Diagonal Matrices

As mentioned earlier, the new extended state description offers a
convenient way of further improving the estimation accuracy in
the case of undamped exponentials (harmonic retrieval) or array
signal processing problems using a ULA. In both cases, equation
(6) is satisfied and, consequently, A is a unitary diagonal matrix,
ie.,

A = A 24 (21)

Using the diagonal extended state realization {A, o”, C} and
equation (10) we get

AN—IC

yT(n) - OT An—(N—l)
= of ANV x(nv-1)
y(n) = of AWV X(N -1,
yielding
yH(n) = AT FV-D-"Z(N - 1) (22)

lzoo

via similarity transformations. Thus, the uncorrupted block Han-
kel matrix

yI(N-1) yH(N-2) y?(L~1)
SR L B P NS L
yH (1\; - L) y#(N — L-1) yH:(O)

can be factorized into @ &° with
@ = |Z(N -1), FZ(N -1),..., FN " PZ(N - 1]

such that y# (N — 1) = hTZ(N — 1). Combining this with
previous results (12), we can factorize a concatenation of two
block Hankel matrices

B = [B,Bb} =@[ds,¢"]. (23)

Replacing B by ﬁfb, the noise corrupted version of B*®, in
the algorithm described above, will, therefore, yield a unitary
diagonal feedback matrix A. Simulations have shown that this
forward-backward estimation technique improves the frequency
or DOA estimates significantly.

5. Identification of Late Fields in MCG Recordings

Our proposed method for the identification of late fields or late
potentials in MCG or ECG recordings consists of three steps:
First, the algorithm identifies (triggers) the maximum of the
QRS-complex and extracts the relevant data from all M chan-
nels (Figure 1). Then, a constant offset and a linear trend are
compensated via least squares. This compensation is performed
in all M channels independently. Finally, the presented multi-
channel spectral estimation scheme determines the frequencies
of the superimposed harmonics using the traditional or the new
extended state description (harmonic retrieval). Notice that the
described algorithm can also estimate the complex amplitudes of
the dominant harmonic components in the individual channels
(1), which will belp clinicians to determine the spatial position
of the heart deficiencies.

Experiments with data, recorded by a biomagnetic multichan-
nel sensor system (KRENIKON®) [7], show promising results.
The frequencies found using the extended state representation
were plotted as histograms. While Figures 2 and 3 show his-
tograms of patients with late fields, Figures 4 and 5 depict those
of healthy individuals. All four histograms have two peaks in the
low frequency range around 15 Hz and 50 Hz. They are caused
by the final portion of the QRS-complex (Figure 1) and the Eu-
ropean net frequency, respectively. Nevertheless, the histograms
differ at high frequencies. While histograms of patients with late
fields are characterized by a significant amount of harmonics in
the high frequency range (around 200 Hz), those of healthy indi-
viduals do not exhibit this phenomena. Therefore, late fields can
apparently be diagnosed by plotting histograms of the estimated
frequencies. These first results, that seem to be superior to exist-
ing identification schemes [1], [2], still have to be confirmed by
a systematic clinical evaluation.
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Fig. 2: Patient with late fields: 344 heartbeats, 1032 frequencies
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Fig. 4: Patient without late fields: 239 heartbeats, 548 frequencies
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Fig. 1: Ventricular late fields
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Fig. 3: Patient with late fields: 288 heartbeats, 817 frequencies
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Fig. 5: Patient without late fields: 243 heartbeats, 650 frequencies



