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Résumé

On considére un systéme qui utilise des décisions
décentreés et qui travaille dans un clutter de Weibull
“dont les paramétres sont inconnus. Chaque radar emploie
un algorithme a vrdisemblance maximum pour ces
décisions. La régle meilleure de fusion "K sur N" et les
seuils locals sont obtenus avec le test de Neyman-
Pearson. On determine la puissance du test en fonction du
SCR de chaque récepteur, le nombre de radars et la
probabilité globale de fausse alarme. On a traité les
résultats théorique et des simulations.

. 1-Introduction
In distributed radar systems with decentralised
" detection, built up of a set of radars distributed over a
geographic area, a fusion center and a control center,
each radar takes a binary decision about the presence or
the absence of the target in the resolution cell under test
independently from the others, and sends its partial
result to the fusion center that takes the final decision.
The management center controls the sensors and the
fusion center in order to maximise the global system
detection performance [1]. The benefits derived from a
multiradar detection system are a broader coverage
area, accuracy and reliability. The classical Neyman-
Pearson criterion can be generalised to the distributed
detection problem [2]. For a given system topology, the
goal is to maximise the overall probability of detection

at the fusion center ( Pp,,) while keeping the overall
probability of false alarm (Pp,,,) constant. In the case
of parallel fusion network and assuming independent
sensor observations with known distributions, the
globally optimal structure consists of likelihood ratio
tests at all sensors and a Neyman-Pearson test at the
- fusion center. Unfortunately the optimal thresholds of
each sensor and fusion center are solutions of a set of
coupled non-linear equations. So their evaluation is
computationally difficult, particularly with a large
number of sensors. In this work we assume the K-rank
fusion rule: a target is declared to be present in the
tested cell if at least K of the N detectors have made
the same decision. The rank K spans from 1 to N, with
K=1 and K=N corresponding to the Boolean "OR" and
"AND" fusion rules. In such a framework the
decentralised constant false alarm rate signal detection
has been developed in the literature assuming
Rayleigh-distributed clutter [3]. In realistic radar
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applications clutter distribution deviates quite often
from Rayleigh, particularly when high resolution
radars operate at low grazing angles. Weibull
distribution fits well the data acquired from various
types of clutter environments. Therefore our work is
devoted to analyse the decentralised CFAR detection in
Weibull clutter.

We assume, for the sake of simplicity, that the CFAR
detectors have the same structure, while the signal to
clutter ratios (SCR) for each sensor can be different.

2-ML estimation of Log-Weibull parameters

CFAR (Constant False Alarm Rate) technique is a
signal processing technique used in automatic detection
radar systems to control the false alarm when the
clutter parameters are unknown or slowly time-varying.
The CFAR process adjusts detection threshold on a cell-
by-cell basis so that, in clutter or noise interference
environments, the false alarm probability remains
constant. Assuming that the envelope detector output X
is feed in a log amplifier the Weibull variate[4] is
transformed in a Gumbel variate:

fy(y)= %exp(zg—a)emv{— exv(y—gi)] o)

o<y <o .

where —e0 < g <oo is the location parameter, b>0 is
the scale parameter [4]. The expected value and the
variance of the.Gumbel distribution are:

E{¥}=a-7% and m{y}:igibz @

where 7 is the Euler's constant (= 0.5772).

The detection strategy for target detection is:
Yor 2T
Yo <T

Target present ®)
Target absent
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where Y7 is relative to the cell under test (CUT) and

the threshold Tis updated according to the rule:

T=a+gb @)
The false alarm probability is given by:
Ppy = Ey{Pr(Yerr > TIH, )} (5)

As a consequence our aim is to develop a maximum
likelihood (ML) CFAR algorithm for the Gumbel
variate and to derive its performance by Monte Carlo
simulations [5]. The ML estimates are obtained from M /2
samples leading the CUT and M/2 samples trailing the
CUT (Fig.1).
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Fig. 1 ML-CFAR detector
If the M samples are assumed independent and
identically distributed (i.i.d.) the ML estimators can be
easily derived. They are given by:

M
> (6)
4=—bin ___1.”_.__ (7)

Eqn.6 must be solved iteratively to yield E, which will

be used in eqn.7 to yield 4.
In order that the CFAR property holds the coefficient
g in eqn.4 must be determined so that the prefixed Pr,

results. The problem could be solved if the pdf f.(t)

were known but, unfortunately, we cannot find an
analytic expression. However we observe that the joint

pdf of d and b is asymptotically normal because & and

b are maximum likelihood estimators and the pdf of T
is asymptotically normal too. We make use of these
properties even for finite M. These approximations
have been verified by Monte Carlo simulations: they

are quite accurate for M >32 and Pr, 2107,
The expected value and the variance of T are then:
E{f} =a+ gb (unbiased estimators) (8)

Var{f} =0, +¢'0; +2pg0,0; ©)

where O'; , 0, and O'Z are the variances of T a b
respectively, ¢ the threshold coefficient and p the
correlation coefficient between @ and b.

The Cramer-Rao lower bounds for 0'2 and O'g are:

ol 2 2
LA . L (1+—”—+y2—2yJ (10)
Mrn

b 2 “T M’ 6
k*b?
. 2
thus: o; = ; (1)
with:

2
2

2
K’ =—62— 1+ 4y 2y g? +2pg\/1+£—+ y* =27y
n 6 6

In these hypotheses Pg, is expressed by:

M1~ My’
Py, =+——1 exp(~he expl ——— |dy (12
o= ) XP}’)LXP( 2k~]y (12)

with h=expg.

3 - Probability of detection and CFAR loss

In this section the probability of detection for Swerling
type I target model is evaluated. Since the pdf of the
clutter plus target cannot be obtained in closed form
Monte Carlo simulation has been used. Fig.2 shows the
results for Pp, =107 and M=32 reference cells, for
several values of the shape parameter b.
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Fig.2 Pp curves (Ppa=107M=32)
As b gets greater then 0.5 (Rayleigh clutter), the

clutter pdf has a longer tail, which produces an increase
in adaptive threshold. This explains the decrease of
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Pp. 1t depends also from the reduced accuracy in
estimating a and b. This effect is measured by the
"CFAR loss" defined as the ratio between the signal to
clutter ratio (SCR) required to achieve specified P, and
Pry, and the SCR that would be necessary if the
parameters 4 and b were known or perfectly estimated
(M=o0) and the threshold was a constant.

CFAR, = SCR(Pp,,P,.b,M)
*  SCR_(Py,Py.D)
The CFAR losses plotted in Fig.3, represent the
increase in signal power to obtain P, =0.9 in the non
CFAR case.
The CFAR performance is represented in Fig.4 (for

M=32 and SCR=16 dB as an example) in form of
Receiver Operating Characteristics (ROCs) and for

(13)



several values of b. It is evident that the shape
parameter b has a strong effect. The performance of
CFAR receiver degrades as b changes from 0.5 to 2.
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Fig.4 ROC curves (SCR=16 dB, M=32)

4 - Distributed CFAR detection

The overall probabilities of detection and false alarm
at the fusion center may be written in similar
expressions, given by:

P, = 2...2R(1.t1,...,l.tN)HP,-H(l—P,-) (14)

t Uy R 5o
where Uu;,...,uty are the local binary decisions and
R(ul,...,uN) is the Boolean function that corresponds to
the fusion rule, that equals 1 if the overall decision u is
for H, and H, otherwise. Ptot and P; may represent the
overall and local probability of detection or false
alarm, s, is the set of the indexes i of the local decisions
for H,,and s, the set of the indexes of the decisions for
H, .Using the K-rank fusion rule eq. 14 can be expressed
in recursive form [3]:

Pm,=i (g(—l)”(iD(Ngqu(Nfzﬂ(...)D (15)

i=k [\ p=0 p reg+l

[RV]

Combining the ROCs with the relationship (15) we
have at the fusion center:

Pp, = FN,K(gl,...,gN,b,SCRl,...,SCRN)
Peao: =Gy x(81/--/8n)

where the form of the functions Fy x and Gy x depends
onN and K.

Given the number N of radars in the network, and
assuming known the shape parameter b and the SCRi
(i.e. the local ROCs), the goal is to find the rank K and
the threshold coefficients g; that maximise the Pp,; for

.(16)

a fixed P;A,m at the fusion center. For the cell under
test we can assume as clutter shape parameter the
estimate provided by the local CFAR detectors,
whereas the SCRi can be calculated from the estimated
clutter scale parameter. The problem can be solved
computing for each K=1,.,N the g;,.,gythat
maximise Pp,, for the given Pr,,, and choosing as
globally optimal solution the rank K and the threshold
coefficients g,,...,gy that provide the largest Pp,,

For each K the problem to be solved is a non-linear
constrained optimisation problem.

In the case of equal SCRi the problem is greatly
simplified if the g; are forced to be equal. This condition-
proved itself to be optimal for Rayleigh fluctuating
targets. In such a case all the Pp; and Pp,; are equal,
and eq. 14 assumes a simple binomial expression:

Y N i N-i
Pu=2| . p'(1-p) a7
i=K
where P is the common Pj. The optimisation program
inputs are the number of sensors, the overall probability
of false alarm, and the local ROCs determined in
tabular form. The outputs are the overall probability of
detection for the N rank fusion rules, the optimal rank
and the corresponding threshold coefficients, all
functions of the examined SCRs.

5- Results and discussion

Several situations using networks with ML-CFAR
detectors have been studied according to the proposed
method assuming Swerling targets and Weibull clutter.
As expected, the resulting overall power of the test (i.e.
Pp, for a fixed Pp,,, as a function of the SCRs)

increases with the number of radars. When the SCRs are
equal, inverting the power of the test curves for a given

Pp,.:, we get the SCR necessary at each sensor to obtain
the wanted Pp,, as a function of the number of sensors
N. The results are shown in Fig.5 for Pp,,= 0.9,
P =107, M=32.

The figure shows clearly the network gain, i.e. the
decrease of SCR necessary to obtain the wanted
performance, that yields increased coverage area.
When the number of radars exceeds 5 or 6, the addition
of a new radar does not significantly improve the
detection performance of the network, especially in the
Rayleigh case. It is therefore necessary a compromise
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between performance and network cost.

Interestingly, network gain is higher in spiky clutter
and system performance for large N overcomes the
Rayleigh one.
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Fig.5 (Ppao=107,Ppi=0.9,M=32)
Network Pp,, is less sensitive to shape parameter b

than a single radar. In order to evaluate the network
ML-CFAR loss, network performance has also been
calculated for M=oo. The loss corresponding to a single
radar (fig. 3) decreases very quickly as the sensors
number increases, and for N>4 it is nearly independent
from b and lower than 2 dB. These results, together with
Fig.5, allow to achieve a trade-off between number of
radars and complexity of the ML-CFAR processors.
When the number of radars is large it is not necessary to
use detectors with a large number of reference cells.

For different SCRs we report for simplicity the case
N=2. Obviously system performance will be better than
that achievable with the less noisy detector alone (i.e.
the one with the higher SCR). Coverage area will be
therefore wider than the union of the coverage areas of
the two radars operating apart.

Fig. 6 shows the SCR necessary at one radar to obtain
the wanted performance as a function of the SCR at the
other radar, for the same Pp,,, Py, . M and b as
above. We remark that the most noisy detector (i.e. the
one with the lower SCR), although its performance is
very poor when operating alone, contributes
significantly to system performance when co-operating
with the other detector, expecially for the case of spiky
clutter. Obviously when the lower SCR goes to -eo (dB)
performance reaches that of the other radar alone
6- Conclusions

The optimum value of rank K and the corresponding
operating points of the local detectors, for equal SCRs
exhibit the following trends:

1) The optimum K starts from the maximum value N
("AND" rule) for low values of SCR, and decreases as
SCR increases, towards K=1 ("OR" rule).

2) For increasing shape parameter b and/or decreasing
Py 41+ the optimum ranks tend to be higher

3) In the Rayleigh case the performance achievable
with the various rank fusion rules are less dispersed and
less sensitive to SCR changes than in spiky clutter.

4) For large N, spiky clutter, and low SCR, the optimal
K is high and the corresponding operating points of the
local detectors are characterised by low threshold
coefficients and high values of Pgs. In such a case the
high average data rate can overcome the communication
channel capacity, and it may be suitable to choose a K
lower than the optimum to get more reasonable
operating points.
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For different SCRs and N=2, the following remarks can

be made:
1\ The r\phmnm rank in the oxamined rangoc nf SCRe

a]ways K=2 except for the Rayleigh case where
becomes 1 when one or both SCRs are high.

2) The optimisation yields a true global optimum, since
for N=2 the examined rules ("AND" and "OR") are all
the possibly optimal fusion rules.

3) In the AND case, as the SCRs difference increases,
the optimal threshold coefficient of the most noisy
detector (i.e. the one with the lower SCR) decreases
whereas the one of the less noisy detector i increases (a
dual behaviour arises operating with the "OR"
strategy). As a limit, the "AND" decision of the fusion
centre just sets u=u; , so all decision making is really
done by the detector with higher SCR. Approaching
this situation, the most noisy detector is no longer really
useful and its data rate may overcome channel capacity,
and can be therefore excluded from the decision process.
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