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RESUME

Dans cette article on présente plusienrs algor-
ithmes efficaces pour le filtrage de signanx a 2 dimensi-
ons. Les algorithmes sont dérivés de ceux utilisés pour
le calcul de convolutions lineaires courtes, présentés en
[1] et [2]. Les resultats de cette etude illusirent bien
les limites de P’application de la technique du nesting
dans le cas de filtres séparable. Les algoritmes sont
relativement simple et ont efficaces realisations techni-
ques. En outre, on explique comment optimiser le
choix de l’algorithme en fonction des paramétres de
Pordinateur.

1. INTRODUCTION

The construction of efficient filtering algorithms is
one of the most important tasks in the domain of di-
gital signal processing. - The time efficiency of algor-
ithms, being always important, becomes their critical
feature when image processing, and in general, pro-
cessing of multidimensional data is to be done. .The
fast FIR filtering is usually acomplished by using a
fast convolution algorithm for a data block combined
with the overlap-and-save, or overlap-and-add method
[3], [4]. There is a great variety of convolution algor-
ithms that can be applied here: FFT method, circular
convolution, and linear convolution based ones. When
a FIR filter to be realized is rather short, the last met-
hod is the best. This is the image processing case [5].

The derived in the paper two-dimensional filtering
algorithms are overlap-and-add ones based on linear
convolution ones from [1], and {2], section 2. The main
feature of the latter algorithms consists in the fact that
they fill the gap between very efficient methods for long
- data vectors, and algorithms for the shortest data
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In the paper a set of efficient filtering two-
dimensional algorithms for short filters is derived. The
algorithms are based on linear convolution ones for
short data vectors derived in [1], and [2]. In the case
of separable filters limits of the nesting technique use
are illustrated. The algorithms are relatively simple
and have efficient program realizations. Moreover, it
is explained in the paper how to make the optimal
choice of the algorithm depending on the computa-
tional machine available.

vectors from [3], [4]. In this way a set of algor-
ithms for short-length multidimensional data vectors
is obtained, section 3, Table I. The nonseparable filt-
ers can be implemented using two-dimensional algor-
ithms, only, but in the case of separable ones row-
column technique can be applied, and it is shown in
section 3 which algorithms are better in the latter case.
Additionally, some comments on appropriate propor-
tions between filter and data block sizes in fast filtering
methods are given.

2. METHOD

Recently a simple method of generating efficient
linear convolution algorithms for short data, based on
the Chinese Remainder Theorem [3], [4], has been in-
troduced for choice of polynomials modulo which com-
putations are done [1]:

zZR 7T — 1, and Z% — o0. (1)

Computations modulo Z7 — 1 are in fact T-point cir-
cular convolutions, reduction modulo ZF is equivalent
to rejection of all but first R polynomial coefficients
resulting in “truncated convolutions” [1], and Z% — oo



1076

reduction is a shorthand notation for the operation of
rejecting all but S last polynomial coefficients [4], also
resulting in truncated convolutions. So, reductions
and reconstructions modulo polynomials (1) are in fact
very simple, and for computations modulo Z7 — 1 we
have at disposal a wide range of ready to use algor-
ithms [3], [4]. Only non-trivial 3-point truncated con-
volution is computed using 5 multiplications and 5
additions [2].

In this paper the two-dimensional data are pro-
cessed either by using algorithms obtained by nesting
[6], [3] the one-dimensional ones, or by using the
" row-column technique, of course, the latter one for
separable filters, only. Similarly as in the case of
Winograd’s Fourier Transform Algorithms, inside the
nesting algorithm’s structure T X T-point circular con-
volution algorithms can be found (3], [1j. The best
way of computing them is through the application of
polynomial transforms. The technique has been used
for generating efficient masking algorithms for image
processing [7], too.

3. RESULTS

The FIR filters used in image processing are typi-
cally rather small, which is not only due to computa-
tional costs, but also due to filter approximation pro-
blems [5]. In the paper it is assumed that the filters are
separable, or nonseparable, but not symmetric ones of
size 2 X 2,3x 3,4 x4, and 5 X 5. The relevant results
are given in Table I. The results have been obtained
from those for linear convolution algorithms by add-
ing to their addition counts operations linked with the
overlap-and-add technique [3], [4]. Apart from mul-
tiplication (mults), and addition (adds) counts, oper-
ation numbers per input data samples are given:

p=mult(M)/M, a = add(M)/M,

M is the size of input data block in the overlap-and-
add method (‘Input size’).

Parameter p is defined as the ratio of the total mul-
tiplication time and the total addition time, character-
istic of an computational equipment on which a given
algorithm is implemented. From the knowledge of the
p value for the equipment at disposal the Table I pro-
vides the information on the choice of the best algor-
ithm. The best algorithm corresponds to the one in
Table I whose p value is nearest to but smaller than
that of the equipment. For example, if the p value
for the equipment is 2 and the nonseparable filter size

is 3 x 3, then the best algorithm is that for 6 x 6-
point data blocks, see Table I (p > 0.50). The opera-
tions should be counted together with all accompany-
ing non-arithmetical operations (e.g. data transfers,
index modifications, etc.), hence, the evaluation of the
“true” p value is never absolutely exact. It can be
seen from Table I that even for the smallest L values
there exist fast algorithms, i.e. algorithms more effici-
ent than the direct formula.

When considering an algorithm for an L-tap FIR
filter an optimum algorithm for size N = K + M — 1
exists. In the two-dimensional case, when a Lo X L1-
tap filter is non-separable, the L; valnes are [8]:

N;

7= — = Ng- ,':0,1, 2
" In Ny + const Nt 0- N, ¢ (2)

while for a separable filter ‘In N7’ should be replaced
by ‘In N,’. In the paper, without any loss of generality,
it. is assumed that Ng = Ny = N, Lo = L = L, and
Mg = My = M. As can be seen from the formula
(2), the optimal longitude of data segment in a fast
filtering algorithm should be greater than that of the
filter. Notice that in fact even for such small set of
filter examples effects of (2) can be observed, at least
for nonseparable filters, Table L.

The results for separable filters provide an ex-
cellent illustration of choice between the nesting, and
row-column technique [9] (‘r-¢” in Table I means ‘row-
column’). Namely, we can see here a direct manifesta-
tion of the rule of number 2 [10]. The rule states that
the nesting is preferable if:

pltro + 1 = pojin) > ar(po — 1), (3)

(operation in dimension ‘1’ is nested inside that for
dimension ‘0"). The left-hand side of equation (3)
describes the gain in the number of multiplications
when replacing row-column method by the nesting one,
while the right-hand side the loss in the number of
additions. If pg = pqy = 2 the gain is null, hence,
the name of the rule. Notice that indeed, this spe-
cial case, i.e. the case when multiplication count per
data sample for a row-column algorithm is close to 4,
discriminate between nesting and row-column algor-
ithms for big p values. For small p the ‘price’ of extra,
additions per saved multiplication becomes important,
however, for smallest the x values in the case of 2 X 2-
tap filters the nesting technique is always preferable.



Table I
Fast two-dimensional linear convolution algorithms
Filter | Tnputsize | T' | mults | adds | p | @ | p range?
Non-separable filters
2 x 2 | direct form. - 4 3 4 3 p>0
2x2 1 9 22 225 5.5 | p>1.43
3x3 1 16 57 1.78 | 6.33 | p> 1.77
3 x 3 | direct form. - 9 8 9 8 pz0
4x4 4 46 214 | 2.88|13.38 | p> 643
55 4 78 205 | 312} 11.8 | p>6.13
6x6 4 118 390 3281083 ] p>0.50
4 x 4 | direct form. - 16 15 16 15 p20
Fx5H 4 118 388 | 4.72 1 15.52 | p> 0.05
6x6 4 166 561 | 4.61 | 15.58 | p > 0.58
TX7 6 184 866 3.76 | 17.67 | p> 244
63 154 | 1221 |3.14 | 2492 | p>11.83
5x 5 | direct form. - 25 24 25 24 no range
8% 8 6 312 1355 | 4.88 | 21.17 p=0
10 x 10 63 426 2380 | 4.26 | 23.8 | p>4.27
Separable filters
2x2 1 direct r-¢ - 242 1+1 4 2 p>0
27r-c 1 343 4+4 3 4 no range
2x2 1 9 21 2251 525 | p>1.86
3r-c 1 4+4 8+8 | 2.67 | 5.33 | no range
3x3 1 16 56 1.78 | 6.22 | p> 2.06
3x3 | direct r-c - 343 2+2 6 4 p2=20
4r1-¢ 4 8+8 | 14414 | 4 7 p>15
4x4 4 46 210 | 2.8813.13 | p> 6.06
Ex 5 4 78 291 | 3121164 | p> 6.06
6 r-c 4 11+11 | 25425 | 3.67 | 8.33 p>4
4 x4 | direct r-c - 4+4 3+3 8 6 p>0
4 r-c Ix14 ]| 949 | 18418 | 4.5 9 p> 0.86
6 - 6 12412 | 41441 § 4 | 1233 [ p> 6.67
Tx7 6? 154 | 1212 | 3.14 | 24.73 | p> 1447
5% 5 direct r-c - 5+5 4+4 10 8 p=>0
5rc 45 14+14 | 29429 | 5.6 | 116 | p> 0.82
4 13413 | 31431 | 5.2 | 124 p>2
8 r-c 6 18418 | 56456 | 4.5 14 p>2.29
10 r-c 6% | 21421 | 85+85{ 4.2 | 17 p>10
10 x 10 6> 426 2364 | 4.26 | 23.64 | no range

Yi.e. the sizes of circular convolutions used (1).

2In fact, the best algorithms for p > 1, only. Namely, for p < 1 some “obvious” algorithm’s derivation rules are irrelevant [2],
hence, the p values are provided for completness of the table, only.

3 Apart from the T = 6-point circular convolution algorithm the polynomial product modulo Z 2 +1 algorithm is used, [2].
*Optimized algorithm obtained by nesting of 2-point ones [3], [4].

53-point truncated convolution computed using definition formula.
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4. CONCLUSION

Various small filters have been considered in this
paper. For each of these filters a number of fast algor-
ithms for filtering of two-dimensional data is presented.
The choice of the optimum algorithm depends on the
value of p — the ratio of multiplication time and addi-
tion time — of the computing machine. It is explained
how to make the optimal choice once the value of p is
known. It is also shown when the nesting technique is
recommended when a separable filter is implemented.
The possibility and indeed the construction of fast, effi-
cient algorithms for very small filter sizes are clearly
demonstrated.
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