10,5

QUATORZIEME COLLOQUE GRETSI - JUAN-LES-PINS - DU 13 AU 16 SEPTEMBRE 1993

HAPI : a Hardwired Array Processor Interface
for a real time image processing machinel

Serge WENDLING

Université Louis Pasteur, ENSPS / LSIT
7, rue de I'Université 67000 STRASBOURG

RESUME o
Dans une premitre partie nous présentons les principales

caractéristiques de MASYYE, une machine "hybride" pour le
traitement d'images en temps réel vidéo développée dans notre
laboratoire. Nous considérons principalement le probléme des
échanges de données entre processeurs, goulot d'étranglement
de nombreux syst®mes. Nous décrivons plus en détail un
processeur d'E/S cAblé mais programmable et montrons
comment il permet de contrbler les trés importants flots de
données circulant dans le systéme.

Introduction

Parallel machines make it possible to reach the computing
power requested in real time image processing. But calculating
very fastly is not enough. There must also exist a mechanism
managing the very important data sets flowing through the
processors. If such a facility is not provided, the I/Os will
become the bottleneck of the system. In this paper, we describe a
programmable input/ output interface which synchronizes
several processing units on their data flows. A first part will
introduce the architecture of MASYVE, an image processing
machine built in our laboratory and consisting of two hardwired
/O processors and three processing units : a data acquisition and
preprocessing workstation (ICOTECH), an array of 48 by 48

quasi systolic processors (GAPP) and up to four array processors -

(ZIP) [PHE+88},[EDH+89],[PHE+89]. We then focus on the
array processors and give some details about HAPI (Hardwired
Array Processor Interface) which implements a wired "producer-
multiconsumers" scheme where the producer and the
consumer(s) can be changed dynamically at any time by
software. Finally, we will introduce some possible topologies for
the MASYVE machine which are made possible by HAPI (data
flow sharing and/or program flow sharing), the final goal of our
approach being to find out how to best use each processor for
optimizing the throughput of the machine for a given sequence
of algorithms.

The MASYVE machine

The developpment of systems able to execute image
processing algorithms very fastly can be considered in two ways:
the first one leads to develop dedicated hardwired processors
assuming each one a specific function and statically "re-
connected” together each time a given sequence of processes is
to be performed. Such an approach makes it possible to meet real
time performances but has at least two main drawbacks : its costs
and its poor flexibility. The second one, considering that most

ABSTRACT
This paper first exposes the main characteristics of an

"hybride" SIMD / MIMD machin> czlled MASY VE and built in
our laboratory for real time image processing. It focuses on the
problem of the data exchanges which is very often neglected
though it becomes the bottleneck of many systems. A hardwired
but programmable I/O processor is described with some details
and it is shown how such an interface can be used to efficiently
control the very important datae flowing through the system.

algorithms encountered in image processing do fit in only a few
classes for which there exists some optimal structure of
parallelism, leads to the design of "hybrid" machines, still
satisfying the "near real time" constraints but being fully
programmable and dynamically configurable by software (“near
real time" stands for systems which do not always work at real
video rate. For some algorithms, they spend several frames to
compute the results. In many sitvations, this is not really a
drawback. Even more, for numerous applications, "operator real
time", which means an answer within one or two seconds, is
almost fast enough). Considering this last possibility, we
developped the MASYVE machine shown in figure 1 and
consisting of :

- ICOTECH, built in our laboratory around a standard 16 bit
SISD processor and used to digitize or display images and to
perform at video rate some very low level algorithms such as
image summing or averaging, profiles, ..[DZW86].

- A GAPP machine (Geometric Arithmetic Parallel Processor)
commercially available from NCR and built around 32 chips,
containing 6*12 Processing Elements each, to form an array of
48 by 48 bit serial processors. This SIMD structure is very
efficient for local processing such as integer zooming,
thresholding, edge detection or N by M spatial filtering (for each
processed pixel, these algorithms need only knowledge about a
limited neighbourhood) [HERSS8].

- Up to four array processors (ZIP) well suited for medium level
algorithms such as global transformations (FFT, transform,
convolution and correlation evaluations), image zooming or
rotating by any real factor or angle and with bilinear
interpolation, conversion of a pixel structure into list structures...
- A host processor (in our case a PC) managing the whole system
(through a BIT 3 to Multibus I interface card) in loading the
object codes into the other processors, configuring the data
pathes and interfaces, sequencing the execution of the different
tasks, providing a convivial interface between the user and the
machine.

! This work is part of a project partially supported by the Commissions of the European Community under the contract ESPRIT P26.

1024

- A four chanel numeric video bus with a transfer rate up to 160
Mb/s and a specific interface for the GAPP machine. This
interface, called the "windower" [EUG89], performs the 1/Os for
the processor array and formats its data according to the size of
the input image and the window size processed by the GAPP. It
is software configurable and resolves the problem of overlapping
regions in the case of local processing (because the GAPP array
size is much smaller than an image, it is necessary when
implementing an operation involving an N by M neighbourhood,
to slice the input image into sub-images. To avoid erroneous
results near the borders of these sub-images, the windower feeds
the GAPP with a set of (N-1)/2 by (M-1)/2 overlapping regions
and re-arranges the results).

- The HAPI interface which integrates the array processors into
the rest of the system as will be shown below.

The array processors : MERCURY ZIP 3216

These commercially available processors have been
choosen because they provide following features :
- a standard BUS : at the time they were considered, ihe main
part of the system (ICOTECH and GAPP) did already exist and
used a Multibus I,
- compatibility with the transfer rate imposed by the existing
numeric video bus (one 8 bit pixel every 65 ns),
- local memory for the programs in each of the two processors
building a ZIP which speeds up the performances in limiting
main memory access conflicts,
- numerous I/O possibilities (Zip Bus, Multibus, auxiliary ports)
and user defined control and status lines which facilitate the
integration of the ZIPs into a system and makes it even possible
to build a "ZIP network",
- a wide software environnment ("C like" compiler, image
processing library, simulator for debugging).

The general architecture of a ZIP 3216, as shown shown in figure
2, includes :

- a control processor (CP) assuming the I/Os, feeding the
arithmetic processor with data and saving its results, performing
main storage accesses and processing interrupts. It is a scalar
processor with 32 internal registers and 16 Mbytes addressing
capabilities.

- an arithmetic processor (AP) assuming data in fixed point
format (block floating point).

- a 32 bit wide internal bus (ZIP Bus) with a transfer rate up to 40
Megabytes/s,

- an interface to a host system with DMA possibilities,

- two auxiliary ports for I/Os with peripherals which were used
to integrate our HAPI interface.

Each ZIP is clocked at 10 MHZ and most instructions are
executed within one clock period (100ns).

The HAPI interface

Many authors have described machines with quite astonishing
fast computing possibilities. Unfortunately, when they speek
about performances, they most often suppose that the code of the
algorithms to be executed and the data to be worked on are
already in core. Such an approach leads to give an erroneous
idea of the true possibilities of a machine because the important
point is not, say, to perform a 512 by 512 real FFT in a few
hundreds of milliseconds, but to know how long it takes to
process completely an image (or set of images), starting from its
capture and ending with the display of the final searched for

results. For many applications this means that the performance of
a machine is to be evaluated as its global throughput, that is
finally, the number of images it can process within a given time
slice. Thus, when considering the execution of a sequence of
tasks onto several processors, the I/Os needed to load the
different processors with their object code or to transfer data or
results from one processor to the other, can become a severe
limitation canceling all the benefits of ultra fast CPUs. To take
into account this constraints, we devoted much efforts to build
efficient interfaces around the MASYVE machine. Concerning
the ZIP processors, three directions bave been investigated :

- Multibus 1/O : it allows data transfers either under program
control or by direct memory acces (DMA). Unfortunately its
transfer rate is by far too low to make it usable for such an
important data flow as the one imposed by real time image
processing. However, it will be used to configure the system
(only a few bytes are needed) and to download the code of the
algorithms to be executed into the different processors (due to
their large local memory, this is to be done only once).

- ZiP bus I/O : as it ailows a transfer rate up to 40 MB/s, it seems

to be the best solution for video real time exchanges. However
we discarded it for two reasons : 1) we would have had to build a
" ZIP bus interface " for all the other processors (ICOTECH and
GAPP), 2) we wanted to keep an open system in which a
component can be changed without having to rebuild the whole
machine.
- auxiliary ports I/O : these two 16 bits wide ports (one for input
and one for output) allow data exchanges in a similar way as
does a Centronics port for a printer (the main difference however
is that the ZIP always works as an "answering device", that is, for
each exchanged word, in any direction, it is the external device
which has to initiate the transfer). Maximal transfer rate is S
MHZ that is, at least 200 ns for two bytes. This is obviously not
fast enough for our purpose because ICOTECH sends or needs at
least one byte every 65 ns (there is no way to slow ICOTECH
down because it is sequenced by the video clock and works on a
"burst mode" principle). However, interesting features are
offered : 1) the two 16 bits one directional ports can be tied
together to build a single bidirectional 32 bits I/O port which
theoretically allows a transfer of 4 bytes in 200 ns (versus 260 ns
for ICOTECH), 2) the reading from (or writing to) the ZIP ports
can be initiated by external synchronization signals, 3) some
command and status I/O lines are left free for the user.
Consequently, the design of an interface satisfying the video real
time requirements is possible even if non trivial timing problems
have still to be solved: 1) all the I/Os have to be synchronized
with ICOTECH which imposes its clock and control signals, 2)
ICOTECH cannot send or receive less than one line at a time
which implies 512 bytes during each active part of a video line,
3) the time of 200 ns for a 4 bytes exchange on the ZIP side is a
“at best" transfer rate which cannot always be satisfied because
of periodic memory refresh interrupts (every 96 ps).
All these considerations, lead to the HAPI interface schematized
in figure 3. It can support up to four ZIP array processors, the
GAPP and the ICOTECH machines. It basically realises a
programmable wired "producer-multiconsumers” scheme with
data reformating. The use of FIFOs which can be read and
written asynchronously and at the same time, resolves the
problem of speed differencies between the processors.

A data exchange involves always a unique source (either
ICOTECH, or GAPP or one of the ZIPs) and one or more
destinators, Following table summarizes the different possible

data flows (as already stated, the I/Os between ICOTECH and
GAPP are performed by another interface called the "windower"

which is described in [EUGS89)) :

SOURCE DESTINATOR(S)
Processor Format Processor(s) Format
ICOTECH 8 bits 1 to 4 ZIP 32 bits

GAPP 8 bits 1to4ZIP 32 bits
YAl 32 bits ICOTECH 8 bits
yAlY 32 bits GAPP 8 bits
ZIP 32 bits 1to3ZIP 32 bits

The ability to have several ZIPs as destinators makes it possible,
for instance, to fetch an image from ICOTECH (or a result from
GAPP) and send it at the same time to all the ZIPs which can
keep it in its own or store only a part of it. Thus, it is possible to
feed efficiently the processors with data for several different
topologies of the system (data partitioning or algorithms
partitioning). Another point to be noted is that the interface does
never know the size of the exchanged blocks which simplifies
both its hardware realization and its programming, and reduces
the system overhead to configure the interface.

A transfer is always initiated (but not controled) by a ZIP and
starts as soon as all the concerned processors assert their ready
control line (the processors not involved in the exchange just
carry on their computing, concurrently with the LO).
Synchronization of the exchanges and generation of all the
needed control signals are performed by the interface which
leads to very short /O software for the ZIPs, the only way to
reach the expected response times (about 200 ns for 4 bytes, that
is 160 Mbits/s). Programming HAPI is quite easy and consists in
defining, for each transfer, a control word specifying the source
and the destinator(s). The succesive commands needed to carry
out a sequence of algorithms are generated by the application
program running onto the host processor and in full transparency
to the end user. Figure 4 shows how HAPI communicates with
the host which uses the Multibus to gain access to :

- a command queue (FIFO) executed sequentially by HAPI (each
command corresponds to a transfer of one up to 512 lines of 512
bytes each),

- an instruction register holding the command in progress,

- a status register showing the state of the interface,

- two control lines (START and STOP) making it possible for the
host to suspend and resume commands execution, which is very
helpful for debuging purposes.

Using a command queue and defining two instruction modifiers
(the LOOP bit and the PAUSE bit) is very interesting when a
sequence of algorithms is to be performed repetitively. In such a
case, the I/O commands have to be downloaded only once
because HAPI restarts automatically with the first command in
the queue if the LOOP bit is set in an instruction (similarly, when
the PAUSE bit is set, execution is suspended until a START
signal is sent to the interface by the host). Thus, in many
applications (e.g. scene analysis with features extraction to guide
a robot), it is possible to initialize the interface and "simply
forget it".

An application running onto MASY VE consists of a sequence of
tasks called by the host processor. Each task is executed by one
(or more) processor(s) (host, ICOTECH, GAPP, ZIPs) and can be
decomposed into three steps : 1) acquisition of the data to be
processed, 2) execution of one (or more) algorithm(s) onto that
data, 3) restitution of the computed results. Concerning the ZIPs,
all the I/Os are performed by HAPI and are initiated by calling

1025

specific procedures with their correponding arguments. Such a
procedure which leads to synchonize the different processors
onto their data flow to reach the best global throughput for the
machine.

Beacuse there is no global sequencing clock, each component of
the system works asynchronously to the others and at 'its
maximal speed. Thus, it becomes possible to improve the
performances of the machine in simply replacing one given
element with a more powerful one, without having to reconsider
the others (the integration of two 386 processor-cards working at
33 Mhz and with 387 co-processors, is currently being realized.
These cards will be seen by HAPI as two ZIP processors and lead
to more flexibility, less expense, better performances and
considerable simplifications in algorithms programming).

Conclusion

The MASY VE machine and its interfaces bave been built
to study the advantages of using concurrently different processor
architectures in image processing (figure 5 shows some possible
configurations for our system). The results obtained until now
confirm the interest of our approach but bring also into light the
difficulty of deciding which processor (or which set of
processors) is (are) to be used for each algorithm of a given
sequence to optimize globally the response time of the system,
We do think that a possible way to solve this problem is to
specify characteristics which apply to the different processors
independently of their internal structure, that is taking into
account only parameters such as loading times for object code,
transfer times for data and execution times for algorithms. A
correct evaluation of these parameters for different
configurations of the system, and the fact that in most image
processing applications the sequence of algorithms to be
executed is known a priori and applied repetitively, should then
reduce the problem to a simple valuated graph in which a
"optimal way" is to be found. Once obtained, this optimal path
will bring an answer to the crucial question "when do we best
use which processor(s) to achieve the fastest throughput?" The
formulation of this approach is currently under study and the
MASYVE machine will serve as a tool to verify our assumptions
[SW1.

Acknowledgements

The author whishes to thank to the people working upon
the ESPRIT project P26 for their help and kindful permission to
use some of the illustrations presented in this paper. He
especially thinks of C. DRAMAN, R. EUGENE, Y. HERVE, E.
HIRSCH and F. PIERRE. '

References

[DZW86] C. DRAMAN, K. ZAMPIERR], PL. WENDEL,
"Poste de traitement d'images configurable : icotech”, Semaine
internationale de I'image électronique de Nice, 1986.

[HER88] Y. HERVE, "Mise en oeuvre et optimisation de
l'utilisation d'un processeur quasi-systolique dans une chaine de
traitement d'images temps réel”, Theése de 1'Université de
Strasbourg, april 1988.

[PHE+88] F. PIERRE, Y. HERVE, R. EUGENE, C. DRAMAN,
S. WENDLING, "Description d'une machine de traitement
d'images temps réel: l'approche multi- parallélisme”, PIXIM
Paris, 1988

[EDH+89] R. EUGENE, C. DRAMAN, Y. HERVE, F. PIERRE,
S. WENDLING, "Architecture muiti-paralitle : Applications en
traitement d'images", GRETSI, Juan le Pins, april 1989.

1026

[PHE+89] . PIERRE, Y. HERVE, R. EUGENE, C. DRAMAN,
S. WENDLING, "A machine for video real time image
processing using parallel polymorphism”, CA-DSP 89, Hong
Kong 1989.

[CAET88] CSELT, AEG TELEFUNKEN, ENSPS, THOMSON
CSF, "Advanced Algorithms and Architecture for Speech and

Image Processing”, ﬁnél report

September1988.

{SW] S.WENDLING "Contribution A I'architecture des ordinateurs
et au traitement d'images. Mise en ocuvre d'une structure parali2le
hybride par une recherche d'optimisation globale", These d'Etat,
Université de Strasbourg (France), January 1992,

Esprit Project P26,

! .
' L b N S
| 1Double ! lnce! i Tripple 1 @ . i :
IRl LW | faeme) || WINDOWER < capp 3
LiRaM 4Py b lvieeo i x| 3) w 3B
| [Program i Moduie 1 RAM I*""' : . i e m— §.-, x| o 83
I L e IR 1 |
b 1 | iy i : ig «1 3 81 4 : c
i A : A ry S8 [25 s r
b Y LBX Y | | 1 | i CT—> 3
_________________________ | »
| 1 I ! HEE - ¥ { ®
L 7 MULTIBUS I v v v A4 \d v . = 5 ; < % = o *
-~ 73 6|3 E
. SHIEHER 1R M
Figure 1 §i3 HEIR L i
&]
33 8 L] 5
v 1
i c * $:
e ool Tipver s .~ — oo 3 - E ° 82
S T [Hh T e B o ER W I e I = | H
zun ' le2 Zip 3 ‘ Zip 4 ;? E iz
Ausin ¢ lnxwl)j Aum T heten ’ M aetis 1 Augentt gg ,%
»
- f- B 5. 3. 3t
| w1) {808 Prowsssnes | W08 Tramsmarvar . v 13 v
A— omaate | v s
£ 8 23 3% o $ H
g g 201l | N
32 bt Local BUS & ﬂ v } < v E g
-
e AL EEN CaTsls o e)
T A t t A
¢ \ /
e L] - x
Figure 3 § § Fi)
) S < AP igure
?/ ._f ‘f’ ‘_f g LR
P A wow
Crk!
cix i :
E_:Ly’ ICOTECH QAPP QAPP ICOTECH % ﬁ H B E
o0 —
i i y
Vides Bus HAPI i HAP! ivides Bus } _
g , fEL Zp2; z'°3 W ouT] = E: PAUSE
S l_ Macro Pipeline 3 5 OFD = Loop
:> 2 < 31 2 FIN|E—»icHo ;o
i L B ! g i 3 g N = —»Gapp T B
| rZip 1 —Zip 2 : 7 £ & = 1—ppva =
Vees Bus H&PI [; gﬁ:l Video Bus 3 —— PV3 g
- > : i [=1 »]
! —>7|pa~>-zlp4—> i . - —» PV2]
E — Muttiple Macto Pipeline e a
—————> Start ol -V TE
D [- .
T Zp z - 3| =~ —» BUS1
— o= c » 3= _—»suUso
) ——»7ip 2 ——— r g -l > ICHO 4
Vidwo Bus - HAPI | — T HAPI lvaeoBws | - é—: ~ é“ = |—>ocarp T
PN g ouT 0 g gl —>eva |2
. —_— ! R < Ql =
; 5 { . Muttiple Program Single Data (MPSD) 8 8 g S > :z; ﬁ
b : i —— ~l =
—zps - sl= >
L — > Stop Sl @ 12
P —— Figure 5
: . . “E"p'z':_ﬂ S R A - R Figure 4
vides Bus - HAPI - e e HAP1 Video Bus = | €—— CMD In progress
LN — — ST -z
> TR iy 1 . <——RdyPV4
!) R 1 i Mutliple Program Muitiple Data (MPMD) 1] <— RdyPV3
Lo) o 2 =| «—Raypv2
—qp 4 —— Single Program Multiple Data (SPMD) H P RdyPV1

