QUATORZIEME COLLOQUE GRETSI - JUAN-LES-PINS - DU 13 AU 16 SEPTEMBRE 1993 T

Analysis of adaptive algorithm’s parallelism

J.Sdnchez* and H.Barral

ENST, Télécom Paris, Département Signal
46 rue Barrault, 75634 Paris Cedex 13, France.
E-mail: sanchez@sig.enst.fr, Tel:++33 1 45817782, Fax:+433 1 45887935.

RESUME

Ce papier analyse le probléme de l'implantation d’algorith-
mes adaptatifs sur des machines paralléles MIMD ayant
un faible nombre de processeurs. Le graphe de flot de
signauz de l'algorithme et un ensemble de paramétres de
Parchitecture cible nous permetent de prédire la perfor-
mance mazimale des implantations, prenant en compte
les délais dis auz communications. Finalement, on cal-
cule des limites & l’accélération des implantations ayant
un nombre donné de processeurs.

I Introduction

In digital signal processing most of the time we have to
deal with real-time problems. When complicated algorithms
are used and a lot of data has to be processed, conventional
processors are not powerful enough, so special Digital Signal
Processors (DSP’S must be used. If more computational
power is needed we have two choices: a VLSI or a parallel
machine implementation. The first choice doesn’t allow us
to change final specifications and it is cost attractive only if
we are expecting to use it in a large scale. The second option
is becoming cheaper and easier to develop as new parallel
MIMD machines and processors [4] appear. There is still a
lack, however, of implementation tools, so implementing al-
gorithms is a difficult task. Furthermore, we usually don’t
know in advance the performance that we obtain because
we can no more consider only the algorithm’s arithmetic
complexity: communication volume and precedence rela-
tionships must be taken into account. In this paper we’ll

see how to predict implementation’s performance from a -

set of algorithmic and architectural parameters.

II Problem Formulation

Given an algorithm A and a set of architectural restric-
tions R, we would like to find a parallel machine (i.e. the
number of processors and the network’s topology) and a task
allocation that minimize execution time. This is not an easy
problem since we know [5] that the task allocation problem
is a NP-complete one. Nevertheless, a lot of heuristics have
been developed [6] to find sub-optimal solutions.

In this paper, we restrict this difficult problem in various
ways, so as to make it easier to solve. First, we are going
to focus in a special kind of algorithms, the adaptive filters,
which are iterative (figure 2). Second, we are not going to
solve the restricted problem from the beginning. We’ll find
the performance in an wnlimited resource parallel machine
(URPM) and, if this implementation does not fulfill the re-
strictions, we’ll predict the performance in a real machine.

II.1 Algorithm’s model
Algorithms will be modeled as a set of sequential tasks
_ running concurrently. Let N, be the number of tasks in

*Work supported by Conacyt (Mexique)

ABSTRACT

In this paper we study the problem of implementing adap-
tive algorithms in non-massively parallel MIMD message-
passing computers. We use the algorithm’s signal flow
graph and a set of parameters of the target architecture to
predict implementation’s mazimal possible performance,
accounting for inter-processor communications. We also
detect critical tasks, to which we can apply classical par-
allelisation techniques in order to enhance performance.
Finally, we calculate speedup bounds for implementations
with a given number of processors.

which the algorithin has been partitioned. The granularity
of this partitioning is an important factor. Fine grain parti-
tionning is well suited to SIMD and VLSI implementations,
where each computational unit has a small charge and com-
munication is reduced or local. This approach is used, for
example, in [1). With fine grains we can see all of the algo-
rithm’s parallelism and communications. Medium or large
grain partitionning can be used if the number of processors
of the target machine is small. Some of the algorithm’s par-
allelism and communications are eliminated in this way, so
this kind of partitionning must be carefully used.

Algorithm partitionning and data flow can be repre-
sented by a Signal Flow Graph (SFG). Nodes, denoted by
circles, represent tasks. Edges represent data flow between
tasks: we will call them communication channels.

Fig. 1, for example, depicts the SFG of the FTF-MC
algorithm [2] in several granularities. An edge i-j with a
D indicates that task : sends data that will be used in the
next iteration by task j. Physically, this is implemented
introducing a delay (memory) in the communication channel
with a size equal to the communication volume Cj;. Inputs
to and outputs of the algorithm are represented by edges
not coming or not going to another task.

Each task ¢ has an associated set of instructions which,
applied to the inputs, produces outputs. According to the
specific processor used, these instructions will take 7. CPU
cycles. To simplify the analysis, we’ll consider that, in every
task:

¢ Computation is made until all inputs have arrived.
e Outputs are sent simultaneously to the next tasks.

I1.2 ‘Architecture’s model

The target multiprocessor system considered will be a
message-passing MIMD machine with N,, homogeneous pro-
cessors connected in a fixed topology restricted by R. Each
processor has a CPU and L4 communication units (CU).
CPU and CU’s share a local memory and work concurrently.
A CU links one processor to another in a point-to-point con-
nection. We’ll call T' the set of communication parameters

of the machine: {%,g,%.;,1g,d}. g is the maximal commu-

1000

Figure 1: Different granularities for algorithm FTF-MC, N=1.

nication rate of a link:

_ CPU speed (1)
9 7 erterndl link speed

Let d;; be the communication time between two tasks
7 and j. If these tasks are located in neighbor processors
(point-to-point communication), we’ll have:

dij = te + gCjj (2)

where t, is the time necessary to establish a communica-
tion. If tasks are located in non-neighbor processors (far
commaunication), the communication time will depend on
the interconnection’s network topology. Let d be the aver-
age diameter of the network, i.e. the expected number of
processors a message has to cross to arrive to its destination.
In this case, the communication time will be:

dij = d(t. + 9Cij) (3)

Finally, if tasks are located in the same processor (inter-
nal communication), we’ll have:

dij = tei +1ig x gCyj (4)

where t.; is the time needed to establish an internal com-
munication and tg is the rate between internal and external
communication speeds:

external link speed

ig = (5)

internal link speed

The values of t,; and ig depend on the way we program
the internal communications. If we use Occam, for example,
communication between tasks located in the same processor
will require a data transfer in memory. A more efficient
way to implement internal communications is by making
the communicating tasks use the same memory locations:
ig will be then null because no transfer will be made. From
now on, we’ll consider this last case.

III Analysis of parallelism
Several quantities have been proposed in the literature
to measure implementation’s performance [7, 8]. A classi-
cal one is speedup, defined as the ratio between algorithm’s
execution time in a sequential and a parallel machine. We
can slightly modify this definition for iterative algorithms:

_IP()
(") = T (%)

where IP(z) is the implementation’s iteration period {3, Ij
in a parallel machine with & processors, defined as the time
between the end of two successive iterations (figure 2). In

. real-time processing I P must be smaller than the sampling

rate T.

We’ll show in the next section how to predict the itera-
tion period bound (IPB) of an algorithm implemented in an
unrestricted resource parallel machine (URPM). When we
use IP B in (6) and we consider zero communication delays,
we obtain the algorithm’s mazimal speedup [7], which repre-
sents the average number of busy processors in the URPM.

III.1 Critical loop

Let’s define the distance between tasks ¢ and j as the
time elapsed from the beginning of the computation of task
i to the end of the data transfer to task j, i.e. T; +d;;. The
total distance in a loop B of the SFG is then:

Z T; + ds;
T, = WEB)

E Zig

i,jEB

where z;; is the number of delays in edge ¢-j. Note that this
distance depends on the SFG, and in the architectural and
implementation parameters.

A

iteration
NS
[~
£y

Y

time -
Iteration
period

Figure 2: [terative algorithm’s latency and IP.

It has been shown [9}, in the context of electrical circuits,
that the minimal output period (i.e. the inverse of the max-
imal sampling rate) of a signal entering a circuit G is equal
to the critical loop distance maxgeg T. This result can be
extended to MIMD implementations if we apply equation
(7) in the algorithm’s SFG and we choose the same condi-
tions than in electrical circuits, i.e. every task and commu-
nication channel is able to work in parallel. This condition
is fulfilled in the URPM, when we allocate each task in a
separate processor and each channel in a separate CU, i.e.
when the machine graph is isomorphe to the SFG: we’ll call

Task i | Vanable | 7} (C40’s CPU cycles) | C;;
(Aa C!_l, CM+11 V&l_i..l) = fu(A’ a_la C, V_11 U)
k.0 auzr 4M+5 8
k.1 V{,{H,a‘l 26 4
k.2 5M + 16 4M
k.5 Crr+1 5M +6 4M

(B’ﬁ’ C, V_i) = fd(Bvﬁy CM11, 1/&14_1, U)
k.7 auz 4M +5 4
k.4 C 5M + 6 4M
k.3 v~ 42 4
k.6 B 5M+6 4M
(VV’ 6) = fJ(I’V, Ca yld’U

8 [We] IM + 14 | 4M

Table 1: Tasks of the k-th channel in the FTF-MC algo-
rithm.

this implementation M,. The iteration period lower bound
of M, is equal to:

Z T+t +9Cy5
ijEB
(8)

E Z,‘j

i,j€EB

IPBy(T) = BESFG

where we have used the fact that each task is executed in
a different processor to substitute (2) in (7) for point-to-
point communications. M; is a realistic implementation in
an URPM as we take into account communication delays.

IV Task clustering

We can sometimes obtain a better implementation than
M, trading communication time by parallelism. In an

MIMD implementation we have to deal with these oppo-
site factors: tasks should be allocated in the same processor
(task clustering) to minimize communication time and, on
the other hand, tasks should be allocated in different pro-
cessors to allow them to work in parallel.

Figure 3: SFG for the algorithm FTF-MC (N=3) and its
M, implementation with N, = 7 processors.

There are several ways to cluster tasks. We’ve already
seen one, namely changing SFG’s granularity. In figure 1c,
for example, tasks 1., 3.1, and 8.i have been put together
to form tasks 1, 3, and 8 respectively (figure 1b). Unfor-
tunately, we don’t still know how to change granularity to
obtain better implementations. We present here a technique
to cluster tasks, based in the critical loop concept and in the
algorithm used in [10] to schedule iterative algorithms in a
parallel machine.

The SFG allows us to see precedence relationships be-
tween tasks. According to our data flow model (Section
II.l), if an edge exists between tasks ¢ and j, task j can’t
begin execution until task ¢ ends. They can’t run in paral-
lel, even in the URPM, so we won’t lose parallelism if we
place these tasks in the same processor. Furthermore, this

l\.IUJ.

'\
Ga—=D (a)
D] [od

a(n)= 3b(n-1)+2

b(n)= 5a(n)+4 time
Gr—>€D (b)
2D |
bifb2
a(n)= 45b(n-2)+44 aifadad
b(n)= 5a(n)+4 time

Figure 4: Erecution of loops in the UPRM.

will eliminate communication time between them because
we’ll have internal rather than external communications.

As the IPB depends on loop distances, we must focus on
critical loops. We can place the tasks of a loop in the same
processor without losing parallelism and decreasing loop dis-
tances at the same time because of the reasons stated for-
merly, as we show in figure 4a. We’ll call M, the implemen-
tation using N, processors obtained after task clustering of
M;.

We must point out that, in order to perform task clus-
tering, we must have, as stated in [10], a perfect rate signal
flow graph, i.e. a SFG in which all loops have exactly one
delay. We show in figure 4b why this restriction is intro-
duced: we can’t place tasks of a loop having more than one
delay in a processor as we’d loose parallelism.

The M, iteration period bound can be predicted from
the SFG as:

T; +te+ 9Cij
$,Jdi lustere B
IPBZ(F) = Brer‘;'gc i,jdif feluster +

Zi5
1,jdif fclustereB
Z T; +tei + 29 x gCyj
i,jsameclusterc B (9)

E Zi ¥

$,jsameclusterc B

where we have substituted 54) as the communication time
between tasks in the same cluster.

The M, implementation is 2 good compromise between
an implementation with maximum parallelism, represented
by M; and the one with no communication delays, when
te =g =0 (Ty):

IPB,:(T) < IPBy(T) < IPB1(T) (10)

To show the use of these techniques, we’ll analyze the
implementation of the FTF-MC algorithm [2] in a network
of TMS320C40 processors. Figure 3 depicts the SFG for a
number of channels N = 3, and table 1 the task computa-
tion charges and the communication volume for a filter of
order M. Critical loop of M; implementation will be, for
any N, 0.5-0.4-1.5-1.4-. . -(N-1).5-(N-1).4-0.5, with an iter-
ation period bound of:

N(Tr.s + dis .4+ Tha + dia,(k41).5)

Esz_ol 2k.5,k.4 F Zk.4,(k+1).5
N(18M + 120)
where we have substituted the communication values of the
C40 processor [4]: t. = 54, g = 1.
The task clustering algorithm gives the clusters shown
in boxes in figure 3, and an IPB of:

N(Te.s + Tr.q)

N-1
k=0 2k.5,k.4 F 2k.4,(k+1).5

IPBy(T) =

IP.Bz(I‘) = = N(IOM)

1002

If we compare this time with the sequential one, we ob-
tain the M, implementation’s speedup:

N(37M + 126)

~ 3.7
N(10M)

s(N;) = for big M (11)

V Predicting implementation performance

We have seen that it is possible to predict the perfor-
mance of M, and M; implementations from the algorithm’s
SFG. Unfortunately, we cannot-fix the number of processors
they use.

In this section we’ll see how to calculate iteration period
bounds for implementations with a given number of proces-
sors. We’ll do this by using the parallelism profile of the
M, implementation, defined in [8] as the plot of parallelism
degree, i.e. the number of busy processors during execution,
versus time.

The activity histogram, obtained from the parallelism
profile, shows the time percentage pr when k processors are
busy in the M, implementation for k = 0.

To calculate IP bounds we’ll consider the followmg hy-
pothesis:

H,: M, is the fastest parallel implementation of an
SFG’s algorithm. Being an implementation in the
URPM using all of the available parallelism in the SFG,
this hypothesis is often verified if communication delays
are not excessive.

H,: If an M. implementation uses k processors to
perform a work in a time IP;:

¢ An implementation with N, > k processors won’t
do better.

¢ An implementation with N, < k processors will
take, at least, a time —1\-,'°—-IP;c to perform the same
14
work.

Using hypothesis H; and H; we can find dteration period
bounds for N, < N,:

NP m
kp
P(Ny) > IPy(Ny) + IPBy(T) S > o+ Y %
k=1 k=N,+1 P

12
where IP; is the time when all processors are waiting(foz
communication. We have separated it because we can’t use
hypothesis H; as it would mean that the communication
time doesn’t change as the number of processors decreases.
IP; is a fraction of the total communication time:

Ainear

Processors

Figure 5: a) Iteration period and b) Speedup bounds of the
FTF-MC algorithm, N=3, in o C4{0’s network.

Zf(Np) Z

i,JEdif feluster

IPy(N,) te + gCij (13)

f(N,) is the superposition factor between execution and
communication time in the parallel machine, bounded by:

IPy(N,)

i jediffetuster te + 9Cij
(14
N,) depend on the algorithm, we can

f1) =0 < f(Np) < f(Ne) =

As variations of f(
try several bounds:

Hj: (Optimistic). IPy(N,) = IPo(N,).
Hj: (Pesimistic). IPy(N,) changes linearly according to
(14) and (13).

Using equations (12...14) and g), we can calculate the
iteration period and speedup bounds for an implementation
with a given number of processors, as we show in figure 5 for
our example. We can see that speedup bounds calculated
using hypothesis H; ... Hj are, even in the optimistic case,
a lot smaller than the generally used linear speedup bound.
They are also more realistic, as we can see by comparing
these bounds with real iteration periods found when using
several allocation algorithms [6].

IP bounds can be useful to predict the minimum number
of processors needed to run an algorithm in real-time. In
figure 5a, the horizontal line indicates the maximum number
of CPU cycles allowing a real-time implementation with a
given frequency sampling. We can see that we need at least
two C40’s to make a real-time implementation of the SFG
in figure 3 when f, = 4000 Hz. If we want to implement
the algorithm using a greater sampling frequency, we must
modify the SFG’s critical tasks to show more parallelism.

VI Conclusion

We have presented a method to predict the maximal per-
formance of implementations in parallel MIMD machines
from the algorithm’s SFG and a set of architectural param-
eters. Approximations are also proposed to predict perfor-
mance when we have a fixed number of processors. This
enables us to have realistic bounds in the performance of
parallel implementations. Critical tasks are identified in
the analysis, so we know where we have to parallelize the
algorithms.

References

{1] P.R.Gelabert, T.P.Barnwell ITf, “Optimal automatic periodic mul-
tiprocessor scheduler for fully specified flow graphs.” IEEE Trans.
on Signal Processing, Vol. SP-41, pp.858-888, Feb 1993.

[2) D.Slock, L.Chisci, H.Lev-Ari and T.Kailath, “Modular and numeri-
cally stable fast transversal filters for multichannel and multiexper-
iment RLS.” IEEE Trans. on Acoustics, Speech and Signal Pro-
cessing. April 1992, vol .40, no.4, pp. 784-802,

[3) J.Silva,“Contribution & l’optimisation d'implantation paraliile
d’algorithmes itératifs récursifs. Application au filtrage adaptatif en
traitement du signal.” These de doctorat de I'Université Bordeaux
1. 1992.

[4] “TMS320C4x. User's guide,” Texas Instruments. 1992.

{5] S.Bokhari. “On the mapping problem.” IEEE Trans. on Comput-
ers. Vol. C30, no.3, march 1981, pp. 207-214.

[6] F.Andre et J.Pazat. “Le placemente de taches sur des architectures
paralléles.” Technique et science informatique. vol.7,no.4, 1980. pp.
385.401.

[7] D.L.Eager, J.Zahorjan and E.D.Lazowska. “Speedup versus effi.
ciency in parallel systems."” IEEE Trans. on computers, vol.38,n0.3,
march 1989, pp. 408-423.

{8] X.Sun and J.L.Gustafson. “Toward a better parallel performance
metric.” Parallel computing. 1991, no.17, pp. 1093-1109.

[9] M.Renfors, Y.Neuvo. “The maximum sampling rate of digital fil-
ters under hardware speed constraints.” IEEE Trans. on Circuits
and Systems. Vol. CAS-28, no.3, march 1981, pp. 196-202.

[10] K.Parhi, D.Messerschmitt. “Static rate-optimal scheduling of it-
erative data-flow programs via optimum unfolding.” IEEE Trans.
on Computers. Vol. 40, no.2, february 1991, pp. 178-195.

