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RESUME

Nous présentons quelques résultats sur le probléme de
shape-from-shading: une surface lambertienne est éclairée par
des rayons lumineux distribués sur I’hémisphére nord de la
sphére unité S%; I’équation de Horn est alors une équation
intégro-différentielle qui se présente, dans certains cas, sous la
forme d’une équation de Hamilton-Jacobi. Nous étudions les
problémes d’existence et d’unicité de la solution de viscosité de
cette équation combinée avec différents types de conditions aux
bords qui découlent naturellement des types de bords détectés
dans P'image, ainsi que pour diverses sortes de distributions de
sources lumineuses. Puis, nous présentons quelques résultats
numériques.

1 Introduction

The shape-from-shading problem which is classical in vision
theory corresponds to the reconstruction of a shape (a surface)
from a two dimensional image. The shape is related to the
image brightness by the Horn image irradiance equation (see
[6]) R(n(z,y)) = I(z,y) where I{z,y) denotes the brightness
of the image and R the reflectance map which specifies the
surface as a function of its orientation (or unit normal ) n.
The reflectance depends on the reflectance properties of the
surface and the number and distribution of light sources. We
consider here the idealized case of a Lambertian surface where
the action of a light ray on the image is simply the scalar

product of this ray and n. Besides, if the light sources are -

infinitely away from the surface, they can be considered as
elements of the northern hemisphere of the unit sphere namely
of 2 = {w € R : |w| = l,ws > 0}. Therefore a point of
the surface, denoted by (z,u(z)) for z € IR?, where u is the
elevation of the shape, will be illuminated by the light source
wifwe K(z,u) = {w € 52 : u(z + tw') < u(z) + tws,Vt > 0}
" (where w' = (wy,w;) € IR?); in other ways if no other part of
the surface blocks the light ray of direction w that goes trough
this point. Consequently, the equation may be rewritten in
terms of the unknown function u as follows
[ s = V)1 + [Vuly Du(@)dute) =1 (1)
2
where 1 K(zu) denotes the indicator function of the set K (z,u)
and p is the distribution (a measure) of the light sources.
In some model cases, the equation takes the following form:

F(Vu(z)) = I(z) (2)

where F is a continuous function defined on IR?. For instance,
when the light is coming from a single source, say w € S2, F'
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is defined by

F(p) = (ws—w -p)(1+|p")7%, forpe R*.  (3)

When equation (2) is a first-order nonlinear Hamilton-
Jacobi partial differential equation, the viscosity solutions
theory, due to Crandall and Lions (see for definition [4]),
is a natural tool for equations in which the operator, say
A, satisfies an order-preserving property that can be writ-
ten as follows: Afu](zo) > Alv](zo) if (u — v)(2o) = sup(u —
v)* for all test functions u, v. This property is clearly satis-
fied by (2), as it is shown in [9]; roughly speaking it only states
that if two surfaces, represented by the elevations u, v € Cc?
and lighted by the same distribution of sources, present a
unique contact point zp, then the one below receives more
light at xo than the other, since less rays are blocked by other
parts of the surface and Vu(ze) = Vu(zo).

In the next section, we shall only be concerned with the case
of a single light source, i.e. when F is given by (3). We shall
introduce various boundary conditions which correspond to
various types of edges in the image and present some existence
and uniqueness results. Uniqueness is not true in general (even
among C!, C?...solutions; see the work by Brooks, Chojnacki
and Kogzera [2]) but we can prove that, with some additional
information, equation (2) together with natural boundary con-
ditions is not an ill-posed problem (see also Oliensis [10]). Note
also that no strong regularity assumption is necessary on the
brightness I which can present jumps.

Section 3 will be dedicated to the case of multiple light
sources. In some cases, uniqueness also holds and we shall
give some examples in which (1) has the form of (2).

Finally, in section 4, we present briefly a numerical scheme
and some experiments for a single light source.
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2 Single light source

This section is dedicated to the study of the simpler case when
the surface is illuminated by a single (distant) light source.
We consider three different types of edges which lead to three
different bouhdary conditions.

Apparent contours The first type of edges concerns appar-
" ent contours: beyond those edges, the surface cannot be seen
even if it might be illuminated and we thus expect the exte-
rior normal derivative of u to become —oo on the boundary
which corresponds to the two-dimensional (z;, z3) projection
of the apparent contour. When the light is vertical, only such
contours occur in the image and equation (2) may be written

(1+ |Vu(z)?)"% = I(z) in Q (4)

where {2 denotes the two-dimensional projection on the plane
(z1,22) of the part of the object which is lit so that 99 is
the apparent contour. We assume that § is smooth (C¥! for
instance) and that u is continuous on 2. We also assume that
Iis given on Q, 0 < J < 1 and 7 is Lipschitz continuous on
Q. We expect to have ] = 0 and %‘L— = —o0 on OF, where n
denotes the outward normal to 2. It is shown in [9] that this
condition, which comes naturally from the definition of the
edge, can be simply formulated in terms of viscosity solutions
by the condition that u is a subsolution of (4) on 2.

Before we formulate general existence and uniqueness re-
sults, we wish to recall here that nonuniqueness is possible
even for C! solutions because (4) does not depend on u and I
may achieve the value 1 (see [9] and [12] for more details). This
is why we shall only consider the case when {I = 1} = {7} for
some T € Q. The next result may be generalized to the case
when {I = 1} C Q is a compact set (see [9]) as soon as some
further information on the elevation of u is known on {I = 1}.
Note also that some compatibility conditions are required on
this additional information in order to obtain existence.

Theorem 1 We assume that {I = 1} = {T} where 7 € Q.
(i) Let u, v € C(Q) be viscosity solutions of (4) in Q and
viscosity subsolutions of (4) on Q. Then u — v s constant on
Q.

(i) Let d(z) = dist(z,8Q); if (inf{I(z)/d(z) = t})7" is inte-
grable at t = 0%, then there exists a unique viscosity solution
u € C(Q) of (4) in Q which is a viscosity subsolution of ({)
on § and satisfies u(Z) = 0.

Grazing light edges The second type of boundaries corre-
sponds to the edges created where the light rays are graz-
ing and the shadow begins. The boundary is the two-
dimensional (z1,2;) projection of those grazing light edges.
They can be defined as the set of points (1,22, u(z1,2))
where w3 — w' - Vu(zy, 15) = 0.

We assume that the surface is illuminated by a single distant
oblique light source w = (—a, —8,7) = (¢,7) € S2 and that
some part of it cannot be seen. The illuminated part § of the
surface is bounded by two edges namely an apparent contour
" and a grazing light edge 9. The case of the contour created
on the other side of the shadow (where it ends) will be studied
in the next subsection,

Let us recall the equation to be satisfied in
(- Vu+~)(1+ |Vul?)"7 =T (5)

Remark that we assume the same conditions on I as in the
previous subsection.

It is shown in [9] that the boundary condition on -y, can be
expressed in the viscosity sense by

¢-Vu+y=0o0n . (6)

Theorem 2 Let u, v € C(Q) be viscosity solution of (5)-(6)
on QU and viscosity subsolution of (5) on QNT. Thenu—v
is constant on (1.

Shadow edges We now allow the surface to be such that a
shadow forms. This clearly means in fact the formation of two
edges: one was studied in the preceding subsection and the
other corresponds to the border of the projected shadow or in
other words to the curve where the shadow ends. The bound-
ary shall thus consist of the two-dimensional (xy, z,) projection
of this edge. Of course, inside the shadow region no informa-
tion is available, but we can formulate on this boundary a
condition that will allow some analysis of the reconstruction
problem in the case when shadows occur. It is a nonlocal
boundary condition.

The situation is the same as in the previous subsection, i.e.
(5) has to hold inside the domain where the shape is illumi-
nated. We shall consider two generic cases which should be
sufficient to study more complicated ones by combining those
two. They correspond to the possibility of the two different
types of boundaries to meet or not.

The first case is the one when the projection of the grazing
light edge and the projected shadow edge do not meet. In this
case we have two distinct regions Q and @ where (5) holds and
I >0on QUQO. This two regions are separated by a shadow
region. Then O consists of the projection of an apparent
contour (I') and of a grazing light egde (7o) that meet at two
points and thus u can be determined up to a constant on .
We can now investigate the reconstruction of u in @. One
part of 8O is the shadow edge, say <}, and the other part that
we shall call I is the union of different types of boundaries.
We suppose that I consists of a finite number of apparent
contours and grazing light edges which meet such that I is
(for instance) of class Ct1. We already know what condition
to impose on I".

If 75 is the shadow edge, this means that, for each z €
there exists a unique point, denoted by T} on v, such that

2z — Ty = A€ for some A\, >0 (7)

and thus
u(z) = u(T) = A7, (8)

which means that v is given on ). Then uniqueness holds
(modulo the prescription of v on {I = 1}).

The second case is when vy and ) meet typically at two
points z; and z,. We define, for each z on v} — {21, 2}, the
point T3 as in (7). We denote by Q the open illuminated part
of the surface and I' = 0Q is an apparent contour (It could
consist of a finite number of apparent contours and grazing



light edges but we present this case in order to simplify the
presentation). Finally, 8Q N (7o U ) = 8. Then we have the
following result:

Theorem 3 Let u, v € C(Q) be viscosity solutions of (5)-(6)
in QU and of (8) on v}, and viscosity subsolutions of (5)
on QUTD. We assume that I is Lipschitz continuous in €,
0<I<1inQ~{z} and I(T) =1 for some T € Q, and that
u, v are Lipschitz continuous near xy and zo. Thenu — v is
constant on 2.

Discontinuous brightness In [13], we allow the function I
to be discontinuous along a smooth curve I" dividing the do-
main {2 in two subdomains 2; and 2, and prove a uniqueness
result for equation (4) and (5). More precisely, the Lipschitz
assumption on I may be replaced by

V(z,y) € % x Qy, i <5, I(z) ~ I(y) < w(lz - yl)

w continuous nondecreasing function such that w(0) =0

which allows a jump, and uniqueness still holds.

3 Distributed light sources

In this section, we give some elements for the study of the
reconstruction of a shape illuminated by an arbitrary number
of distant light sources. For simplicity of the presentation,
we shall only consider the model case when there are neither
blocked rays nor shadows and 9 is the projection of an ap-
parent contour. Thus, [ > 0 in Q and as

Vo € Q, {weSuppy: wy—w - Vulz) =0} C K(z,u) (9)
the equation (1) may be written

[ (s = T 19uR) dp() =1 (10
*
which is of the form (2) where F is bounded and Lipschitz
continuous on IR?. Note that (9) holds when w is concave, but
it can also hold for more general shapes.
We shall also assume throughout this section that 7 is Lip-
schitz continuous in 2.

Even if we add boundary conditions, the uniqueness of the
viscosity (or C!) solution is not automatic and uniqueness
highly depends on the geometry of F. However, we can give
a result in a non too particular case which can be somehow
generalized,

We define the mean value of p by

w= /53» wdp(w)

and we assuine that @-w > 0 for all w € Suppp. In this case,
F(p) < F(—%’—s) = || and the constant || is the equivalent
of 1 for the single light source case with respect to I, i.e. the
“nonuniqueness zones” are the one where I = [@].

Now, if we assume that I < |@] in §2 — {z} and I(Z) = ||
for some T € 2, and the following condition (which is, roughly
speaking, a concavity condition which is usually assumed for
Fs which do not depend on u) ‘

V6 € (0,1), Iw(9) € (0,1) s.t. Vp € R sit. F(p) >0

—

Flep—-(1-0)&) > (11)

=

F(p) +v(0)([@] — F(p))(1 +16p — (1 - 0)Z )73,
then the following result holds.

VA

Theorem 4 Let u, v € C(Q) be viscosity solutions in §! and
viscosity subsolutions on Q of (10). Then, with the above as-
sumptions, u — v is constant on §.

We shall end this section with some nontrivial examples
which fit in the frame of our theorem.

Qur first example is the one when u is invariant under all
rotations around the (0,0, 1) axis. In that case, we immediatly
observe that @ = (0, 0,w3) and that F is spherically symmetric
on IR?. Finally (11) holds as soon as Suppy C {w € S2/w; >
1/v2}.

Another example is the case when p is the uniform prob-
ability on S2. In that case, we can show that F(p) =
(1+ (1+ |p|?)~%)/4 and then check easily that (11) holds.

4 Numerical results

We construct a numerical finite difference scheme in order to
compute an approximation of the viscosity solution of (4). The
approach, based on the dynamic programming principle, yields
a monotone, stable and consistent scheme whose convergence
was proved in [12] using the work of Barles and Souganidis [1].
Let us mention that a different approach, which relies on the
work by Kushner and Dupuis [7] and yields the same scheme,
was also developped by Oliensis and Dupuis in [11].

In section 2, the boundary was defined as the apparent con-
tour of the object and the corresponding boundary condition
was formulated in terms of viscosity solutions by the condition
that u was a subsolution of (4) on {J; let us remark that the
boundary may also be a two-dimensional projection of a level
curve of u; in other words, u is constant on 8§ and the corre-
sponding boundary condition may be seen as a Dirichlet one,
as it was done in [12]; actually, in this case, u is also a viscos-
ity subsolution of (4) in Q and it is the way we expressed the
boundary condition in the following numerical experiment.

Numerical scheme we define a regular lattice on 2 which
size of mesh is Az x Ay. An approximation U will be given
by: V(7).

Usss — Uy Uijar — Uy

D2l = —LAJ:—J’ DyU; = —i%y_—
_ Uj—U1; Uiy ~ Ui
DUy = =, DUy =

Let g = (g;;) be a vector of functions from R? to IR defined
by: V(i7j)7 V(a’ b’ c’ d) e IR’4’

gi5(a,b,c,d) = (1 + max(a*,b7)? + max(c*,d™)?) "2 — L.
Then, a numerical approximation U of (4) will satisfy:
95(D5 Usj, DF Uy, Dy Uy, DFUy;) = 0, V(4, 4).

The scheme is implicit and we compute the approximation,
for given Az, Ay, with a Gauss-Seidel iteration.

Numerical experiments Figure 1 represents a sphere lying
on a base and Figure 2 shows the reconstructed surface from
the above original image assuming that the lighting is vertical;
finally, Figure 3 represents the intensity corresponding to the
reconstructed surface.
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