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RESUME

Dans cet article, nous proposons et évaluons trois
méthodes de recherche de blocs de domaine nécessaires lors
du codage d’images utilisant les sytémes de fonctions itérées.
La premiére approche utilise les transformations de prox-
imité qui se fondent sur la: corrélation entre blocs adjacents.
La deuxiéme stratégie utilise la dimension fractale locale
de blocs du domaine et du destination afin de diminuer la
recherche systématique, et la derniére technique utilise une
approche hiérarchisée de mise en correspondance des blocs
afin de trouver le meilleur block de domaine pour chaque
bloc de destination. Chacune de ces stratégies de recherche
a été implémentée sur un codeur & dimension adaptive des
blocs. Les résultats sont comparés sur I'image de test stan-
dard LENA.

1 Introduction

Iterated Function Systems (IFS’s) have recently received a
great deal of attention in the literature as a new technique
for image coding. Much of this interest stems from the fact
that an IFS is simple in form and yet capable of producing
complicated images, many of which closely resemble those
found in nature [1].

Image coding with an IFS is a block coding technique. The -

image is first divided into a set of blocks, then each block is
coded with a map. There are three main tasks in determin-
ing the set of maps to represent an image. The first is how
to divide the image into blocks, which form the ranges for
the maps. Secondly an appropriate domain must be found
for each map. The final task, determining the map param-
eters, may be accomplished through an error minimization
technique such as least squares. Once a set of maps has
been determined, the reconstruction process is straightfor-
ward [2, 3]. :

This paper will first give some background on IFS theory,
followed by a description of an adaptive block size coder
which has been shown to work well [4]. Three search-based
algorithms are then introduced for determining the domains
for the maps of the IFS. Results are provided comparing
these algorithms using the standard LENA test image.
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ABSTRACT

In this paper we propose and evaluate three methods for
searching for the domain blocks required when coding an
image using an Iterated Function System. The first approach
uses proximity maps, which are based on the correlation
between adjacent blocks in an image. The second strategy
uses the local fractal dimension of the range and domain
blocks to restrict the search, and the final technique uses a
hierarchical block matching approach to find an appropriate
domain block for each range block. Each of these search
strategies was implemented in an adaptive block size coder
and results are compared for the standard LENA test image.

2 Background

An IFS is a finite set of contraction mappings, w;, defined
on a complete metric space, i/, with a distance function p,
ie.,

wi il > U (1)
fori=1,2,...,P with
p[wi(x), wi(y)] < si - p[x,¥] (2)

for all x,y € U with 0 < s; < 1. The notation {U/ : w;,i =
1,2,..., P} will be used to represent the IFS, and the trans-

formation by all of the maps will be written:

P

w(B) = | wi(B), (3)

i=1

where BC U.
Every IFS has a unique fixed point given by!

—_ 3 on
A= nlLl’l;lQ we*(B) 4)
for any B C U. This fixed point is called the attractor and
is defined below.

Definition 2.1 (Attractor) The fized point, A = W(A4),
is called the attractor of the IFS.

1The notation W°"(3A) means the nt? jterate of A by the function
W(). For example: W°3(A) = W(W (W (A))).
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Figure 1: IFS mapping

Thus, to code an image, we wish to find a set of maps
whose attractor closely approximates the image. The image
is thus coded in terms of the map parameters. The recon-
struction of the image from the maps is then straightforward.

Previous work in image coding using IFS’s has proceeded
by dividing the image into uniform-sized blocks and either,
classifying the blocks to reduce the search for domains [5],
or creating a library of possible domain blocks [6]. Alterna-
tively, using a fixed domain for each range block has been
considered in order to avoid the search entirely {7]. In many
cases, in order to increase the flexibility of the map in mod-
eling a block of the image, the domain data is allowed to be
transformed by one of eight possible isometries [5].

In this paper we evaluate three search-based strategies.
The first uses proximity maps and is based on the notion that
the correlation between blocks in an image should be the
largest when the blocks are in close proximity to one another.
The second strategy uses the local fractal dimension of the
range and domain blocks to restrict the search. The final
technique uses a hierarchical block matching approach to
find an appropriate domain block for each range block. Each
of these search strategies was implemented in an adaptive
block size coder that is described in the next section.

As in previous implementations, the maps have a fixed
contraction factor of 0.5 along each axis. The maps are
constructed to transform a domain region, D;, of the image,
I, onto a range region, R;, as illustrated in Figure 1. The
i** map is implemented with the following equation:

wi(z,y) (5)
=Kio+ Ki1 -2+ Kip - y+di - I{zp; + 22, ypi + 2y),

forz=0,...L, —1,and y=0,...Ly — 1, where (zRi, yri)
and (zp;,ypi) are the upper left corner of the domain and
range blocks respectively, and L., Ly are the lengths of the
range block along the z and y axis respectively. The same
isometries considered in [5] were used with the appropriate
changes to equation (5).

For each map, the following parameters must be stored:
the three offsets, Kji, K;z, K;3, the scaling factor d;, the
isometry, and the domain address (zp;, ypi). The final con-
straint to insure a contraction mapping is to restrict the
scaling factor such that |d;| < 1.0. The offsets, as well as
the scaling factor, are determined using a least squares min-
imization of the distance between the map’s range and the
transformed domain data,

Lr=~1Lgp—1

&= > (Hzr +2,yr +9) - wilz,9)°.  (6)
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Figure 2: Three ways that a range block may be divided into
two to four subblocks. With all possible rotations, there are
a total of seven distinct divisions.

3 Adaptive Block Size Coder

Since different regions of an image will vary in detail, it
may be expected better coding results will be obtained by
allowing the block size to vary. Typically, smaller blocks
should be used in those regions of the image that contain
information or detail. Therefore, range block are allowed
to vary from 4 x 4 to 16 x 16 pixels in size. It has been
found that block sizes larger than 16 x 16 tend to result in
objectionable blocking artifacts.

The image is initially divided into a uniform grid of 16 x 16
pixel range blocks. Each range block is then coded and the
error determined using equation (6). If the error for any
range block exceeds a predetermined threshold, then it is
divided. The decision whether or not to divide a block is
based on the Mean Square Error (MSE) of each of the four
quadrants in the range block. If two adjacent quadrants have
an error that is below the threshold, then they are grouped
together to form a larger block while subblocks having an er-
ror that exceeds the threshold are coded separately. In sub-
sequent divisions, the blocks are never allowed to become
smaller than 4 x 4 pixels. This differs from the standard
quadtree algorithm in that each block is not necessarily di-
vided into four smaller blocks. Therefore if only half of the
block contains data that is difficult to model, it may be sep-
arated and coded independently. For example, a 16 x 16
block may be divided into a 16 x 8 and two 8 x 8 blocks.
Figure 2 illustrates three different ways that a range block
may be divided using from two to four subblocks. Coupled
with all possible rotations of this subdivision, there are a
total of seven different ways to divide a range block using.
In Figure 3, the LENA image has been partitioned using this
method and the concentration of smaller blocks can be seen
around the more complex portions of the image.

4 Search Strategies

Using fixed range block sizes in a tiling fashion covering the
image, the remaining task in the image coder is to deter-
mining the appropriate domain block to use for each range
block. In most implementations of an IFS image coding sys-
tem, this search has been the most computationally intensive
part of the coder. In an effort to help alleviate this bottle-
neck, several new search strategies have been implemented
as discussed below.

5 Proximity Maps

In an image there is significant correlation between adjacent
pixels as well as between adjacent image blocks. In an ef-
fort to take advantage of this correlation, it is possible to
consider limiting the search to an area immediately around
each range block. In limiting the search to the closest 256
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Figure 3: Adaptive block size partitioning of LENA image

domain blocks, only eight bits are required to define the do-
main address which may be represented in terms of an offset
from the range address.

6 Fractal Dimension

In coding an image with an IFS, the image is modeled using
a deterministic fractal. One characteristic of a fractal is
that it will exhibit the properties of self-similarity or scale
invariance [1]. Therefore, the local fractal dimension may be
used to classify the domain and range blocks.

When an object is described as being one-dimensional,
this means that the it may be divided into N equally sized
parts, each of which is r = -1%7 of the size of the entire ob-
ject. Figure 4 illustrates this for several objects with integer
dimensions. A two-dimensional object may similarly be di-
vided into N pieces, each of which is r = 17}7; of the entire
object. The final example is a three dimensional object,
again divided into N parts, each of which is r = N—},g' of the
original.

The trend is that a D-dimensional object can be divided
into N equally sized parts that are

r=—s ")

of the original. The relationship between the ratio of the
size of the part to the whole, r, the number of blocks, N,
and the dimension of the object, D, can be written as

NP =1. - ®)
Solving for D gives:

_ log(N)
D= @ ®)

I-D L1 1 Divide object into N = 5 parts
| Each scaled by ratio r = g
NrP = 5(%)1 =1

2-D Divide object into N = 4 parts
Each scaled by ratio r = —1}- =1
NrD = 4(%)2 =1 4

3.D Divide object into N = 8 parts
Each scaled by ratio r = ;1*- =1

NrD = 8(33=1

Figure 4: Example of intuitive definition of dimension for
objects with D = 1,2 and 3. Concept can be extended to
fractional dimensions.

The dimension equation (9) is the basis for many fractal
dimension measurement algorithms, and is the basis for the
Box-Counting Algorithm implemented to calculate the local
fractal dimension to compare potential domain blocks for
each range block.

By interpreting a 512 x 512 eight-bit gray scale image as
consisting of a collection of 512 x 512 x 256 cubes, it becomes
a simple task to count the number of cubes intersected by
the image in order to determine the fractal dimension using
equation (9). This idea can be extended to compute what
is referred to as the local fractal dimension. By restrict-
ing the counting of the cubes to a fixed size neighborhood
around each point, a measure of the fractal dimension in the
proximity of each point may be determined. Because we are
interested in matching domain and range blocks, the fractal
dimension is computed for Lg x Lr and 2Ly x 2Lg sized
blocks. It is instructive to look at the synthesized image
consisting of the local fractal dimensions scaled to the range
of [0,255). Figure 5 shows this image for the 512 x 512 ver-
sion of LENA. The edges in the image have a higher fractal
dimension than the smooth areas, and from this image it is
easy to see why the local fractal dimension has been used as
the basis for edge detection algorithms [8, 9].

The local fractal dimension is used as a basis for the do-
main block search by first computing the local fractal dimen-
sion for each range and domain block. Then for each range
block, a search is performed over the 256 domain blocks
whose local fractal dimension is close to the range block’s
local fractal dimension. The range of the local fractal di-
mension used for each range block is adjusted to ensure that
the pool of domain blocks contains at least the desired 256
blocks. In this manner, each range block has the same size
pool of potential domain blocks to choose from, and these
blocks are similar in a fractal sense.

7 Hierarchical Block Maf.ching

In an image, typically there are regions over which the tex-
ture will be similar. Therefore, a Hierarchical Block Match-
ing (HBM) approach was implemented in order to search,
in an iterative fashion, for a region that is similar to the
range block that is being coded. This method begins by
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Figure 5: Local fractal dimension of LENA image

initially searching over a widely scattered collection of po-
tential domain blocks. Then, the domain block resulting in
the smallest error in coding the given range block is taken
as the center for a more narrowly focused search for a do-
main block. This search is repeated until the desired domain
block is found.

For each range block, sixteen surrounding domain blocks
were tested in a grid fashion, as shown in Figure 6. The
initial distance between horizontal and vertical test points
was set to 128 pixels. Each inter—testpoint distance was
divided by four to avoid any redundant tests. A typical series
of center points for the domain maps to test is illustrated in
Figure 6. Beginning with an initial step size of 128 in both z
and y and performing four iterations of this algorithm, one
quarter of the total number of domain blocks are reachable,
with the unreachable domain blocks being those with odd
numbered rows and columns. This allows far more domain
blocks to be addressed with a minimal number of checks than
the approaches discussed previously. In addition, only 64
domain blocks need to be evaluated for the HBM algorithm
as compared to 256 for the others.

8 Results and Conclusions

Both the proximity maps and fractal dimension methods
were implemented with 256 potential source domains. Thus
the results can be compared fairly with regard to the com-
putational cost. The HBM coder was implemented requiring
only 64 domains to check, and consequently was faster than
the previous two methods.

The results of these three algorithms are given in Table 1
for the 8-bit gray scale 512x 512 LENA image. The proximity
based search results in the largest SNR and also the lowest
bit per pixel rate. Thus, of these methods, the proximity
search based approach is the best. The one advantage of the
HBM technique is that it is faster than the others because
>nly 64 domain blocks are examined for each range block.

Figure 6: Hierarchical block matching example. Each point
represents the center of a domain to be tested.

| Search Method [ BPP | PSNR |

Hierarchical Block Matching {| 0.55 30.5
Fractal Dimension 0.62 | 30.5
Proximity Maps 0.47 | 315

Table 1: Image coding results
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